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Plan for today

Motivation: what’s wrong with CNNs?

Context: Encoders and Decoders

Transformers:

 1. For language

 2. For vision (???!)
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What’s missing from CNNs?

▪ Good at model ing local 

relationships

▪ Bad at model ing long-

range dependencies

“receptive f ield” of a 

neuron: all  pixels in the 

input image that affect 

the value of the neuron.

[Image source] 3

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fvelog.velcdn.com%2Fimages%2Fkgh732%2Fpost%2F0e17b6b6-ec21-486d-bb7f-9a4d3e29e1b1%2Fimage.png&f=1&nofb=1&ipt=b53b55fcfd67fc3e3379b30ab9e288f6c811e7979dcb0084b29670831790cfe9


What’s missing from CNNs?

• Fitt ing long-range relationships within an 

image

• Expensive to train

• Need lots of compute

• Need lots of training data

• CNNs are sort of black boxes

4



ENCODERS AND 

DECODERS
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Recall: CNNs are hierarchical functions

• The input to layer i is the output of layer i-1
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Recall: CNNs are hierarchical functions

Visualizations of features 
in layers 1 and 3 of 
AlexNet. [source]

Layer 2 feature are 
made from Layer 1 
output. Each layer 
gets less localized 
and more abstract.
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https://arxiv.org/pdf/1311.2901


Imagine “slicing” a network in half

First half Second half
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Imagine “slicing” a network in half

First half Second half

Image Output

This interface is really interesting! All of the 
information needed to do the task is present.
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There’s a natural place to slice this 
network.

First half Second half

10



The space in-between is called the latent 
space.

First half Second half

13*13*256 dim. space
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Why are some splits special?

A good latent space is 
compressed and organized. 
Individual numbers are highly 
meaningful.

A bad latent space has diffuse 
information. Individual 
numbers are meaningless 
without context.
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Interpretable Latent Spaces

Cool research result! They studied the latent space of an image generation model. 
They found directions that carried semantic meaning. Moving in a direction would 
create more of an effect, and moving opposite would lessen it.

[source] 13

https://github.com/genforce/sefa


Interpretable Latent Spaces

Latent space
(high dimensional)

The latent code 
corresponding to this image

The result of moving the first 
image a step in the 
“blurriness” direction
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Latent Spaces: summary

• A good latent space has all the relevant information from the original image.

• More info stored in a much smaller space: high information density

• In practice, the higher the information density is, the more organized it must be
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Latent Spaces are useful!

Plan:
1. Solve a really hard vision 

problem on the biggest dataset 
you can find.

2. Design the architecture to have a 
bottleneck

3. Cut off the part after the 
bottleneck

4. Repurpose the part before the 
bottleneck for new problems

Encoder Decoder

L
a
te

n
t 

sp
a
c
e

New decoder
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Latent Spaces are useful!

Encoder:
• Lots of parameters
• Very expensive to train
• Reuseable component
• “pretrained”

Encoder Decoder

L
a
te

n
t 

sp
a
c
e

Decoder:
• Relatively simple
• Problem-specific
• Not the hard part
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Latent Spaces are useful!

My mental picture:

Encoder
Problem-Specific
Decoders

Expensive.
Output is a generically 
useful “latent space”

Often cheap. 
Does one simple job.
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Check-in: What’s missing from CNNs?

• Fitt ing long-range relationships within an 

image

• Expensive to train

• Need lots of compute

• Need lots of training data

• CNNs are sort of black boxes

The encoder/decoder pattern greatly 

helps on both of these issues!
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ATTENTION
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Framing the problem

Long-range dependencies:

• Two or more areas of an image,

• that aren’t next to each other

• but need to be considered jointly to solve a problem

Example: identi fy pictures of a “soccer team”

• person / ball  / grass / matching uniforms...
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Framing the problem

Convolutions make local comparisons. 

Deeper nets = larger receptive f ield.

This sort of works.

Can we do better?

Is there a model that natural ly makes long-

range comparisons? Need a new idea. 

[image source] 22

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fuser-images.githubusercontent.com%2F35737777%2F68632479-95c61f80-04e6-11ea-80b2-2e86a4fcc258.jpg&f=1&nofb=1&ipt=bdd53181deb9f85031865a6b3a41ef3d6543314bb66ae9dd2169546795433858


Roadmap: first NLP, then Vision

Natural Language Processing also has the long-range comparisons problem.

Consider:

 "The animal didn't cross the street  because it was too tired."

 

The equations for Self-Attention arose in NLP. Then we f igured out how to use the 
same model in vision. I’ ll present the NLP version of Attention f irst.
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Illustrative Example: Attention

Some words mostly 

carry stand-alone 
meaning.

Other words’  meaning 
are highly context- 
dependent.

In these examples, 
which words are the 
correct  context for 
interpreting the word 

“it”?

[image source] 24

https://karthikeyanvk.medium.com/an-out-and-out-view-of-transformer-architecture-6926da4c8080


Some formalisms

We’re given a sentence. We want to train 

an encoder to understand it.

Number the words in the sentence: 

𝑤1 , 𝑤2 , … , 𝑤𝑁𝑤
.

Words aren’t very convenient for 

computation. We’ll  embed each word in 

an 𝑁𝑒  dimensional embedding space.

Call  these embedding vectors 𝑥1 , 𝑥2 , … , 𝑥𝑁𝑤

[image source] 25

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fwww.corpnce.com%2Fwp-content%2Fuploads%2F2023%2F12%2Fword-embedding-space-corpnce.png&f=1&nofb=1&ipt=f0374e640a6ece6e1a8c13fe2294e6bdc7a8ba3c708fae0f69e2507fbc6ab4cb


Some formalisms

Let’s pick one word (say, 𝑤𝑗 ) from 

the sentence. We’ll  just talk about 

how to understand that word. Which 

of the other words are relevant?

𝑤𝑗

𝑤1 𝑤2 𝑤3  … 𝑤𝑁𝑤

? ? ? ? ? ? 

Is there some sort of “similarity” 

funct ion 𝑓(𝑤𝑗 , 𝑤𝑖 ) that can measure 
the relevance of each word 𝑤𝑖  to 

understanding 𝑤𝑗 ?

We wouldn’t want to code that 
imperatively, but it makes a great 

machine learning problem.

*Footnote: if this was an NLP class, we’d talk about how 

“words” aren’t quite the right thing to use here. Instead, 
NLP uses “tokens”. But “words” is close enough for what 
we’re doing today. 26



Learned similarity functions

The dot product is a sort of similar ity 

function. It ’s eff icient to compute and lends 

i tself wel l to both theory work and to 

vectorized code. 

But the dot product doesn’t have parameters. 

It can’t learn an attention relationship between 

words.
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Learned similarity functions

This is the normal dot product:

𝑞 ⋅ 𝑘 = 𝑞 𝑘 ⊤

where 𝑞 = 𝑞1 , 𝑞2 , … , 𝑞𝑁𝑒
 and 𝑘 = 𝑘1 , 𝑘2 , … , 𝑘𝑁𝑒

 are 1 × 𝑁𝑒  row vectors.

Here’s the generalized dot product:

𝑞 ⋅ 𝑘 = 𝑞 𝑊𝑞 𝑊𝑘
⊤ 𝑘 ⊤

where 𝑊𝑞  and 𝑊𝑘  are 𝑁𝑒 × 𝑁𝑠  matrices of learnable parameters. We’l l 

train our model to pick parameters.
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Queries and keys

Let’s start using the vocabulary of attention. Our word of interest is 

our query: 𝑞 = 𝑥𝑗 . We want to know if a key 𝑘 = 𝑥𝑖  is relevant 

context to our query.

So we compute the general ized dot product 𝛼 𝑖𝑗 = 𝑞 𝑊𝑞 𝑊𝑘
⊤ 𝑘 ⊤ . 

Summary: we have a learned similar ity function that measures 

whether a given key is relevant context for a given query. Matrices 

𝑊𝑞  and 𝑊𝑘  parameterize the function.
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Queries and keys, vectorized

Recall: we compute the generalized dot product 𝛼𝑗𝑖 = 𝑞 𝑊𝑞 𝑊𝑘
⊤ 𝑘 ⊤ . 

Do that for al l keys, not just one. If we stack the keys row by row 

into an 𝑁𝑤 × 𝑁𝑒  matrix, then we can compute 

𝛼𝑗1 … 𝛼𝑗 𝑁𝑤 = 𝑞 𝑊𝑞 𝑊𝑘
⊤

𝑘1

𝑘2

⋮

𝑘𝑁𝑤
 

⊤

Since the keys are just our embedded words, let’s write

so the expression becomes 𝑞 𝑊𝑞 𝑋𝑊𝑘
⊤ .

𝑘1

𝑘2

⋮

𝑘𝑁𝑤
 

⊤

=

Ԧ𝑥1

Ԧ𝑥2

⋮
Ԧ𝑥𝑁𝑤

 

⊤

=  𝑋,
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Queries and keys, interpreted

Let’s interpret this expression:

𝛼𝑗1 … 𝛼𝑗 𝑁𝑤 = 𝑞 𝑊𝑞 𝑋𝑊𝑘
⊤  

Each 𝛼𝑗𝑖  is a number representing how 

relevant word 𝑤𝑖  is for understanding 

word 𝑤𝑗 . 

Bigger numbers mean highly relevant 

context (pay attention to this word!) 

and smaller numbers are not relevant.

[Actual attention in a real trained 

transformer, courtesy of Jay Alammar] 31

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Softmax

The vector 𝛼𝑗1 … 𝛼𝑗 𝑁𝑤  is real-valued. Each number is a decimal.

The softmax function transforms real -valued vectors into probabi li ty vectors.

real-valued vector

all positive numbers

that sum to 1
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Softmax

softmax( 𝛼𝑗1 … 𝛼𝑗 𝑁𝑤 ) spli ts word 𝑤𝑗 ’s 

attention over al l of the input words, and 

𝑤𝑗 ’s total attention adds up to 100%. 
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Decide on the meaning of a word

Our model is going to interpret words l ike 

this:

1. Assign each word a provisional “on -its-

own meaning”

2. Reassign final meanings based on the 

attention calculation from before.

34



Decide on the meaning of a word

1. Assign each word a provisional 

“on-its-own meaning”

Our lingo for a word meaning will  

be value. The value 𝑣 𝑗  of word 𝑤𝑗  

is

𝑣𝑗 = 𝑥𝑗 𝑊𝑣

Where 𝑊𝑣  is a 𝑁𝑤 × 𝑁𝑜  matr ix of 

learnable parameters.

2. Reassign final meanings based on 

the attention calculation from 

before:

𝑧𝑗 = ∑𝛼𝑗𝑖 𝑣𝑖

𝑧𝑗  is the output. It ’s our “meaning” 

of word 𝑤𝑗 .
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More vectorizing:

Vectorize 𝑣𝑗 = 𝑥𝑗 𝑊𝑣: We get 𝑉 = 𝑋𝑊𝑣 .

Vectorize 𝛼𝑗1 … 𝛼𝑗 𝑁𝑤 = 𝑞 𝑊𝑞 𝑋𝑊𝑘
⊤ . We get 

𝛼11 ⋯ 𝛼1𝑁𝑤

⋮ ⋱ ⋮
𝛼𝑁𝑤 1 ⋯ 𝛼𝑁𝑤 𝑁𝑤

= 𝑋𝑊𝑞 𝑋𝑊𝑘
⊤
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The final form of the attention equations:

With input 𝑤1 , … , 𝑤𝑁𝑤
, embed the words to get row vectors 

𝑥1 , … , 𝑥𝑁𝑤
. Stack these into 𝑁𝑤 × 𝑁𝑒  matrix 𝑋 .

Write 𝑄 = 𝑋𝑊𝑞 , 𝐾 = 𝑋𝑊𝑘 , and 𝑉 = 𝑋𝑊𝑣 .

Return 𝑍 = softma x
𝑄 𝐾 ⊤

𝑑𝑠
𝑉

I snuck this 𝑑𝑠 in. It’s not conceptually 
important, but does give more stable 

training (for stats reasons). 𝑑𝑠 is the 
dimension of our similarity dot product: 

𝑊𝑞 and 𝑊𝑘 are 𝑁𝑒 × 𝑁𝑠 matrices.

There’s a minor notational ambiguity here. 

Understand this to mean that softmax is being 
applied row-by-row to this matrix. So each 
query’s attention adds up to 100% 37



Attention equations, visualized:

[figures courtesy of Jay Alammar]

38

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


TRANSFORMERS
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Small tweak, big performance boost:

Multi-headed Attention:

Do the attention equations 

multip le t imes in paral lel. 

Learn different weights for 

each “attention head”.

Merge the outputs from 

each attention head to 

make the combined output.
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Stack attention layers, with a little 
nonlinearity

The feed-forward block is 

a simple stack of two of 

three l inear neural 

network layers, with a 

standard nonlinearity (like 

ReLU) after each one.

I’m sk ipping the “Positional 

Encoding” today because 

research is moving fast in 

that area and it  hasn’t  

settled down yet. 

repetit ion = stacked layers

[figure from the original paper 

introducing transformers: “Attention 
is all you need, Polosukhin et al.]
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https://arxiv.org/abs/1706.03762


Does it work?

Transformer models model long-range relat ionships in text ef fortlessly. 

Transformer models require mind-boggling amounts of time and data to train.

Famous Transformer models:

• ChatGPT (generative pre-trained transformer)

• Best est imate: fi rst training run cost $12M in compute

• Trained on ~45TB of text

• Google Gemini

• Claude
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VISION

TRANSFORMERS
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How do we adapt transformers to vision?

Transformers were invented as sequence models. Images aren’t sequences 

l ike sentences are.

Newer way of thinking: 

• A transformer is a model that takes a set of tokens and encodes their 

meaning as a latent space vector.

What serves the role of tokens in an image? Why not patches?
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Image patches are our words

1. Chop the image 

into patches

2. Embed each patch 

( just like we did 

with words)

3. Apply the same 

transformer layers 

we used for words

[figure source]
small lie! A few other things change too. But 

the differences are practical, not conceptual.

(we’re still 

ignoring this)
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https://www.researchgate.net/figure/sion-Transformer-encoding-The-image-is-split-into-fixed-size-patches-linearly-embedded_fig1_353284955


What does it mean?

Our model is computing 

a vector represent ing 

the “meaning” of each 

patch.

Each patch’s meaning is 

contextual ly 

dependent. 

The Transformer learns 

which other patches 

matter for 

understanding this one.

[figure source]
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https://www.researchgate.net/figure/sion-Transformer-encoding-The-image-is-split-into-fixed-size-patches-linearly-embedded_fig1_353284955


Does it work?

Vision transformers are the encoders for 

lots of models you might have heard of:

• DALL-E 2 and DALL-E 3 (OpenAI)

• GPT4V (GPT4 with Vision, OpenAI)

• Segment Anything (Meta AI)

• Imagen (Google)

• Firefly (Adobe)
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How do you train one?

We know training a Vision Transformer will  be expensive. But we 

plan to reuse it as an encoder in lots of other tasks.

What tasks do we train the encoder on?

• Image classification (lots of training data)

• Masked Image Model ing (f i ll  in holes in images. Infinite free 

training data!)

• Contrastive Learning (this is more advanced. Train to make 

similar images encode to similar vectors, and dissimilar 

images encode to dissimilar vectors)
48
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