CS 1053

TRANSFORMERS

1/27/26
SLIDES BORROWED/ADAPTED FROM KYLE WILSON
(THANKS KYLE!)

Plan for today

Motivation: what’s wrong with CNNs?
Context: Encoders and Decoders
Transformers:

1. For language

2. For vision (??7?!)

What's missing from CNNs?

= Good at modeling local
relationships

.~
. 5
- = Bad at modeling !ong—
~ range dependencies
-
-
-
P “receptive field” of a
neuron: all pixels in the
5x5 receptive field 3x3 receptive field

input image that affect
the value of the neuron.

[Image source]

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fvelog.velcdn.com%2Fimages%2Fkgh732%2Fpost%2F0e17b6b6-ec21-486d-bb7f-9a4d3e29e1b1%2Fimage.png&f=1&nofb=1&ipt=b53b55fcfd67fc3e3379b30ab9e288f6c811e7979dcb0084b29670831790cfe9

What's missing from CNNs?

« Fitting long-range relationships within an
image

« Expensive to train
« Need lots of compute
« Need lots of training data

e« CNNs are sort of black boxes

ENCODERS AND
DECODERS

Recall: CNNs are hierarchical functions

« The input to layer i is the output of layer i-1

224
> dense dense
g 13 13 13 deise
" 55 5 3 3 3
L W W
1 5 27 3 13 3 13 3 13
384 384 256 1000
224 256 Max Max 4096 4096
%6 Max pooling pooling
i
Stride Pooiing

3 0f4 6

Recall: CNNs are hierarchical functions

224 55

Visualizations of features
in layers 1 and 3 of
AlexNet. [source]

= dense
27 dense
N o £
> —p

119 5&27 3913 Layer 2 feature are
384 1000 made from Layer 1

224 256 Max Max 4096 4096 output. Each layer
o6 ~ Max pooling pooling gets less localized

pooling and more abstract.

Stride
3 Of 4 7

https://arxiv.org/pdf/1311.2901

27
13
N 55 5 3
1 5&27 3913
38
224 256

3

Imagine “slicing” a network in half

224

Stride
of 4

55

96

Max
pooling

First half

4

Max
pooling

Second half
dense dense
dense
13 13
3
9 > —» —p
3 13
384 256 1000
Max 4096 4096

pooling

Imagine “slicing” a network in half

First half Second half

This interface is really interesting! All of the
information needed to do the task is present.

There’s a natural place to slice this

network.

224

27
B
NE : s
1 5||l;5>é7 3|!ES>13 3|!;>13
38
24 256

Stride
3 of 4

55

96 Max
pooling

4 384

Max
pooling

First half

pooli

Second half

dense dense
dense

»> —> —>

1000

Ma] 4096 4096
g

10

The space in-between is called the |latent

SpadcCe.

13*13*256 dim. space

First half Second half
224
> dense dense
g 13 13 13 n
1 55 5 3 3 3
9 9 9 > —» —>
1 5 27 3 13 3 13 3 13
384 384 256 1000
224 256 Max Ma>ll 4096 4096
%6 Max pooling poolig
i
Stride Pooiing
3 of 4 11

Why are some splits special?

A bad latent space has diffuse

/ _ ce A good latent space is
information. Individual compressed and organized.
numbers are meaningless Individual numbers are highly
without context. meaningful.

g 55 dense dense
27 3 3 dense
114 lss c : 1 3] 3 13
+ —> —>
11 5&27 3913 3913 3913
384 384 256 1000
224 256 Max Ma] 4096 4096
%6 Max pooling poolig
Strije pooling
3 of 12

Interpretable Latent Spaces

Cool research result! They studied the latent space of an image generation model.
They found directions that carried semantic meaning. Moving in a direction would
create more of an effect, and moving opposite would lessen it.

- Bckground reoval

ﬂﬂﬂﬂﬂ

e - Rotation + — - - Naturalness +

[source] 13

https://github.com/genforce/sefa

Interpretable Latent Spaces

The latent code
corresponding to this image

The result of moving the first
b image a step in the

\ “blurriness” direction

Latent space '
(high dimensional) <.

14

Latent Spaces: summary

« A good latent space has all the relevant information from the original image.
« More info stored in @ much smaller space: high information density

« In practice, the higher the information density is, the more organized it must be

15

Latent Spaces are useful!

Plan: N Encoder Decoder
1. Solve a really hard vision

problem on the biggest dataset
you can find.

2. Design the architecture to have a
bottleneck

Latentlspace

3. Cut off the part after the New decoder
bottleneck

4. Repurpose the part before the
bottleneck for new problems

16

Latent Spaces are useful!

Encoder: Decoder:
« Lots of parameters « Relatively simple
« Very expensive to train « Problem-specific
« Reuseable component « Not the hard part

“pretrained”

Encoder Decoder

=
\

Latentlspace

17

Latent Spaces are useful!

My mental picture:

Problem-Specific

Encoder Decoders

Expensive.
Output is a generically

Often cheap.
useful “latent space”

Does one simple job.

18

Check-in: What’'s missing from CNNs?

« Fitting long-range relationships within an
image

« Expensive to train

* Need lots of compute The encoder/decoder pattern greatly

—
- Need lots of training data helps on both of these issues!

e« CNNs are sort of black boxes

—

19

ATTENTION

Framing the problem

Long-range dependencies:
« Two or more areas of an image,
« that aren’t next to each other

« but need to be considered jointly to solve a problem

Example: identify pictures of a “soccer team”

« person / ball / grass / matching uniforms...

21

Framing the problem

Convolutions make local comparisons.

Deeper nets = larger receptive field.

This sort of works.
]
-//
Can we do better?
Is there a model that naturally makes long-
range comparisons? Need a new idea. Output Matrix

[image source] 22

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fuser-images.githubusercontent.com%2F35737777%2F68632479-95c61f80-04e6-11ea-80b2-2e86a4fcc258.jpg&f=1&nofb=1&ipt=bdd53181deb9f85031865a6b3a41ef3d6543314bb66ae9dd2169546795433858

Roadmap: first NLP, then Vision

Natural Language Processing also has the long-range comparisons problem.

Consider:

"The animal didn't cross the street because it was too tired."

The equations for Self-Attention arose in NLP. Then we figured out how to use the
same model in vision. I'll present the NLP version of Attention first.

23

Illustrative Example: Attention

Some words mostly
carry stand-alone
meaning.

Other words’ meaning
are highly context-
dependent.

In these examples,
which words are the
correct context for

interpreting the word
Ilitll?

[image source]

The The
animal animal
didn’t didn’t
Cross Cross
the - the
street street
because \, because
it > it

was
too

was
too
long

Sentence 1

The . The
animal animal
didn’t didn’t
Cross Cross
the the
stree street

\ because
=it
was
too

tired

because
it —

Sentence 2

Figure 35: self-attention example

24

https://karthikeyanvk.medium.com/an-out-and-out-view-of-transformer-architecture-6926da4c8080

Some formalisms

We're given a sentence. We want to train
an encoder to understand it.

20 A

Number the words in the sentence: 10‘52&?&03
clis S in .‘nu* .bU”}
Wi, Wa, ..., WNW' " - .YQV&; %’lw&ss e®o ‘
© Y g ur‘ W . 0g® @
. g .. ® .‘n. e .f. ® ¢ oo .0
Words aren’t very convenient for A “6:: .;ﬁ;w.-. oy s
5 / . —101 L .: ..d.a ® ore us @
computation. We'll embed each word in o, M o0t f@“""* ,‘" ,geween
G o ‘ " ’ ° qnto Qve%’ \Eé o
an N, dimensional embedding space. il o spegag_gf‘-"l'azggc'_sg o *° siv“é’n;wp%
worth o ¢ ® o
. BT I L B
Call these embedding vectors x4, x5, ..., Xy el e T e
w -30 4
—-’30 -|20 —iO 6 1I0 2l0 3I0

[image source] 25

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fwww.corpnce.com%2Fwp-content%2Fuploads%2F2023%2F12%2Fword-embedding-space-corpnce.png&f=1&nofb=1&ipt=f0374e640a6ece6e1a8c13fe2294e6bdc7a8ba3c708fae0f69e2507fbc6ab4cb

Some formalisms

Let’s pick one word (say, w;) from Is there some sort of “similarity”
the sentence. We'll just talk about function f(wj, w;) that can measure
_ the relevance of each word w; to
how to understand that word. Which understanding w;,?
of the other words are relevant?
We wouldn’t want to code that

imperatively, but it makes a great
machine learning problem.

*Footnote: if this was an NLP class, we'd talk about how
“words” aren’t quite the right thing to use here. Instead,
NLP uses “tokens”. But “words” is close enough for what
we’re doing today. 26

Learned similarity functions

The dot product is a sort of similarity
function. It's efficient to compute and lends
itself well to both theory work and to
vectorized code.

a = <a1, a2, a3> b = <b1, b, b3>
a*'b = a1b1 + Elzbz -+ a3b3

But the dot product doesn’t have parameters.

It can’t learn an attention relationship between
words.

27

Learned similarity functions

This is the normal dot product:
G-k =gk
where § = [q1, 92, -, qn,] @and k = [kq, ky, .., ky,] are 1 x N, row vectors.
Here's the generalized dot product:
q-k=qw,w, kT

where W, and W, are N, x Ny matrices of learnable parameters. We'll
train our model to pick parameters.

28

Queries and keys

Let’s start using the vocabulary of attention. Our word of interest is
our query: g = x;. We want to know if a key k = ¥; is relevant
context to our query.

So we compute the generalized dot product a;; = G’WquTET.

Summary: we have a learned similarity function that measures
whether a given key is relevant context for a given query. Matrices
W, and W, parameterize the function.

29

Queries and keys, vectorized

Recall: we compute the generalized dot product a;; = G’WquT?T.

Do that for all keys, not just one. If we stack the keys row by row
into an N, X N, matrix, then we can compute

T
[Aj1 - Ay,] = anWI;r E:z
Fn B ES
Since the keys are just our embedded words, let’s write kf = ;22 = X,
so the expression becomes qW,(XW,)'. -ENw- K, 30

Queries and keys, interpreted

Layer:| 5 4 Attention: Input-Input 4

The_
Let’s interpret this expression: animal_
didn_
[@j1 - ANy,] = qW(XW)T £ i
Cross_ Cross_
Each «;; is a number representing how the_ -
.] street_ street_
relevant word w; is for understanding because_ because_
d it_ o if_
WOr Wj. was_ was_
] _ too_ too_
Bigger numbers mean highly relevant tire tire
. : d_ d_
context (pay attention to this word!)
and smaller numbers are not relevant.

[Actual attention in a real trained
transformer, courtesy of Jay Alammar] 31

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

The vector [¢j1 - @&jn,] IS real-valued. Each number is a decimal.

The softmax function transforms real-valued vectors into probability vectors.

>>> X

array([-8.96, 8.84, -2.15, 4.1]) <«
>>> # do softmax

>>> y = pp.exp(-x); v =y / np.sum(y)
>>> y

array([9.99e-01, 1.85e-08, 1.10e-03, 2.13e-06])+— all positive numbers
>>> sum(y)
1.0 <«

real-valued vector

that sum to 1

32

softmax([%1 - @jn,]) splits word w;’s
attention over all of the input words, and
w;’'s total attention adds up to 100%.

Layer:| 5 4 Attention: Input - Input

33

Decide on the meaning of a word

Layer:| 5 4 Attention: Input-Input 4

The_
Our model is going to interpret words like animal_ animal_
. didn_ didn_
this: ; :
t 1
1. Assign each word a provisional “on-its- cross_ cross._
. . the_ the_
own meaning street_ street_
because_ because_
2. Reassign final meanings based on the it NG
5 . was was_
attention calculation from before. fao7 166,
tire tire
d_ d_

34

Decide on the meaning of a word

1. Assign each word a provisional 2. Reassign final meanings based on
“on-its-own meaning” the attention calculation from
_ _ _ before:
Our lingo for a word meaning will B -
be value. The value ¥j of word w; Zj = 1.0
IS

Z; is the output. It's our “meaning”
vj = X W, of word w;.

Where W, is a N, X N, matrix of
learnable parameters.

35

More vectorizing:

Vectorize v; = x;W,: We get V = XW,,.

Vectorize [%j1 - n,] = qW,(XW,)T. We get
@11 0 AN,
: = (XW,))XW,)T
dyn,1 " AN, N,

36

The final form of the attention equations:

With input wy,..,wy, , embed the words to get row vectors
xq, .., Xy, . Stack these into N, X N, matrix X.

_ I snuck this \/d, in. It's not conceptually
Write Q = XWy, K = XWy, and V =XWw,. important, but does give more stable

training (for stats reasons). d; is the
dimension of our similarity dot product:

W, and W, are N, X N, matrices.

_ QKT
Return Z = soffmax(m):V

There’s a minor notational ambiguity here.
Understand this to mean that softmax is being
applied row-by-row to this matrix. So each
query’s attention adds up to 100% 37

Attention equations, visualized:

) _}+ Q KT
X WK K softmax (HH

- Vdj

X WV V ~ l : l

) H+\

[figures courtesy of Jay Alammar]
38

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

TRANSFORMERS

Small tweak, big performance boost:

W@
Multi-headed Attention: ‘ w Qo
0hve | -
Do the attention equations R |
multiple times in parallel. ‘ W;0
W, Q;
Learn different weights for Wi + 1V, mEE T
each “attention head”. | | S
Merge the outputs from WQ
each attention head to W Q;
make the combined output. _%v mEE

40

Stack attention layers, with a little

nonlinearity

The feed-forward block is
a simple stack of two of
three linear neural
network layers, with a
standard nonlinearity (like
RelLU) after each one.

ositional
zncoding

repetition = stacked layers

1
C)[Add &lNorm J\

Feed
Forward

_

A Aod & Nom |

Multi-Head
Attention
S b—

_ 7

O

Input
Embedding

Inputs

I'm skipping the “Positional
Encoding” today because
research is moving fast in
that area and it hasn’t
settled down yet.

[figure from the original paper
introducing transformers: “Attention
is all you need, Polosukhin et al.]

41

https://arxiv.org/abs/1706.03762

Does it work?

Transformer models model long-range relationships in text effortlessly.
Transformer models require mind-boggling amounts of time and data to train.
Famous Transformer models:
« ChatGPT (generative pre-trained transformer)
« Best estimate: first training run cost $12M in compute
« Trained on ~45TB of text
« Google Gemini

« Claude

42

VISION
TRANSFORMERS

How do we adapt transformers to vision?

Transformers were invented as sequence models. Images aren’t sequences
like sentences are.

Newer way of thinking:

« A transformer is a model that takes a set of tokens and encodes their
meaning as a latent space vector.

What serves the role of tokens in an image? Why not patches?

44

Image patches are our words

1. Chop the image Image) Vision Transformer .
into patches e s BB
P -~ - |
2. E_mbed_ each pétCh Patch Embedding]
(just like we did
with WordS) Position _ | ___>lo' l 1 2 3 4 5 6 7 8
Embedding : .
3. Apply the same / \ ¥ v , v) v
(we're still
transformer layers ignoring this) Transformer Encoder
we used for words ‘ J

[figure source]

, small lie! A few other things change too. But
the differences are practical, not conceptual. 45

https://www.researchgate.net/figure/sion-Transformer-encoding-The-image-is-split-into-fixed-size-patches-linearly-embedded_fig1_353284955

What does it mean?

Our model is computing Image Vision Transformer
4 3
a vector representing . . B
the “meaning” of each
patch. Patch Embedding]

Each patch’s meaning is — ‘ 7 7
contextually Embedding = | "'>l0 l 1 2 3 4 5 6 7 8

dependent. \ v v , v ¥ ¥
[Transformer Encoder]

The Transformer learns
which other patches ‘)
matter for [figure source]
understanding this one.

46

https://www.researchgate.net/figure/sion-Transformer-encoding-The-image-is-split-into-fixed-size-patches-linearly-embedded_fig1_353284955

Does it work?

Vision transformers are the encoders for
lots of models you might have heard of:

- DALL-E 2 and DALL-E 3 (OpenAl)
« GPT4V (GPT4 with Vision, OpenAl)
« Segment Anything (Meta Al)

« Imagen (Google)

 Firefly (Adobe)

47

How do you train one?

We know training a Vision Transformer will be expensive. But we
plan to reuse it as an encoder in lots of other tasks.

What tasks do we train the encoder on?
« Image classification (lots of training data)

« Masked Image Modeling (fill in holes in images. Infinite free
training data!)

« Contrastive Learning (this is more advanced. Train to make
similar images encode to similar vectors, and dissimilar

images encode to dissimilar vectors)
48

	Untitled Section
	Slide 1: CS 1053 TRANSFORMERS 1/27/26 Slides borrowed/adapted from Kyle Wilson (thanks Kyle!)
	Slide 2: Plan for today
	Slide 3: What’s missing from CNNs?
	Slide 4: What’s missing from CNNs?
	Slide 5: Encoders and Decoders
	Slide 6: Recall: CNNs are hierarchical functions
	Slide 7: Recall: CNNs are hierarchical functions
	Slide 8: Imagine “slicing” a network in half
	Slide 9: Imagine “slicing” a network in half
	Slide 10: There’s a natural place to slice this network.
	Slide 11: The space in-between is called the latent space.
	Slide 12: Why are some splits special?
	Slide 13: Interpretable Latent Spaces
	Slide 14: Interpretable Latent Spaces
	Slide 15: Latent Spaces: summary
	Slide 16: Latent Spaces are useful!
	Slide 17: Latent Spaces are useful!
	Slide 18: Latent Spaces are useful!
	Slide 19: Check-in: What’s missing from CNNs?
	Slide 20: Attention
	Slide 21: Framing the problem
	Slide 22: Framing the problem
	Slide 23: Roadmap: first NLP, then Vision
	Slide 24: Illustrative Example: Attention
	Slide 25: Some formalisms
	Slide 26: Some formalisms
	Slide 27: Learned similarity functions
	Slide 28: Learned similarity functions
	Slide 29: Queries and keys
	Slide 30: Queries and keys, vectorized
	Slide 31: Queries and keys, interpreted
	Slide 32: Softmax
	Slide 33: Softmax
	Slide 34: Decide on the meaning of a word
	Slide 35: Decide on the meaning of a word
	Slide 36: More vectorizing:
	Slide 37: The final form of the attention equations:
	Slide 38: Attention equations, visualized:
	Slide 39: Transformers
	Slide 40: Small tweak, big performance boost:
	Slide 41: Stack attention layers, with a little nonlinearity
	Slide 42: Does it work?
	Slide 43: VISION Transformers
	Slide 44: How do we adapt transformers to vision?
	Slide 45: Image patches are our words
	Slide 46: What does it mean?
	Slide 47: Does it work?
	Slide 48: How do you train one?

