
CS 1053
TRANSFORMERS

1/27/26
SLIDES BORROWED/ADAPTED FROM KYLE WILSON
(THANKS KYLE!)

Plan for today

Motivation: what’s wrong with CNNs?

Context: Encoders and Decoders

Transformers:

 1. For language

 2. For vision (???!)

2

What’s missing from CNNs?

▪ Good at model ing local

relationships

▪ Bad at model ing long-

range dependencies

“receptive f ield” of a

neuron: all pixels in the

input image that affect

the value of the neuron.

[Image source] 3

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fvelog.velcdn.com%2Fimages%2Fkgh732%2Fpost%2F0e17b6b6-ec21-486d-bb7f-9a4d3e29e1b1%2Fimage.png&f=1&nofb=1&ipt=b53b55fcfd67fc3e3379b30ab9e288f6c811e7979dcb0084b29670831790cfe9

What’s missing from CNNs?

• Fitt ing long-range relationships within an

image

• Expensive to train

• Need lots of compute

• Need lots of training data

• CNNs are sort of black boxes

4

ENCODERS AND

DECODERS

5

Recall: CNNs are hierarchical functions

• The input to layer i is the output of layer i-1

6

Recall: CNNs are hierarchical functions

Visualizations of features
in layers 1 and 3 of
AlexNet. [source]

Layer 2 feature are
made from Layer 1
output. Each layer
gets less localized
and more abstract.

7

https://arxiv.org/pdf/1311.2901

Imagine “slicing” a network in half

First half Second half

8

Imagine “slicing” a network in half

First half Second half

Image Output

This interface is really interesting! All of the
information needed to do the task is present.

9

There’s a natural place to slice this
network.

First half Second half

10

The space in-between is called the latent
space.

First half Second half

13*13*256 dim. space

11

Why are some splits special?

A good latent space is
compressed and organized.
Individual numbers are highly
meaningful.

A bad latent space has diffuse
information. Individual
numbers are meaningless
without context.

12

Interpretable Latent Spaces

Cool research result! They studied the latent space of an image generation model.
They found directions that carried semantic meaning. Moving in a direction would
create more of an effect, and moving opposite would lessen it.

[source] 13

https://github.com/genforce/sefa

Interpretable Latent Spaces

Latent space
(high dimensional)

The latent code
corresponding to this image

The result of moving the first
image a step in the
“blurriness” direction

14

Latent Spaces: summary

• A good latent space has all the relevant information from the original image.

• More info stored in a much smaller space: high information density

• In practice, the higher the information density is, the more organized it must be

15

Latent Spaces are useful!

Plan:
1. Solve a really hard vision

problem on the biggest dataset
you can find.

2. Design the architecture to have a
bottleneck

3. Cut off the part after the
bottleneck

4. Repurpose the part before the
bottleneck for new problems

Encoder Decoder

L
a
te

n
t

sp
a
c
e

New decoder

16

Latent Spaces are useful!

Encoder:
• Lots of parameters
• Very expensive to train
• Reuseable component
• “pretrained”

Encoder Decoder

L
a
te

n
t

sp
a
c
e

Decoder:
• Relatively simple
• Problem-specific
• Not the hard part

17

Latent Spaces are useful!

My mental picture:

Encoder
Problem-Specific
Decoders

Expensive.
Output is a generically
useful “latent space”

Often cheap.
Does one simple job.

18

Check-in: What’s missing from CNNs?

• Fitt ing long-range relationships within an

image

• Expensive to train

• Need lots of compute

• Need lots of training data

• CNNs are sort of black boxes

The encoder/decoder pattern greatly

helps on both of these issues!

19

ATTENTION

20

Framing the problem

Long-range dependencies:

• Two or more areas of an image,

• that aren’t next to each other

• but need to be considered jointly to solve a problem

Example: identi fy pictures of a “soccer team”

• person / ball / grass / matching uniforms...

21

Framing the problem

Convolutions make local comparisons.

Deeper nets = larger receptive f ield.

This sort of works.

Can we do better?

Is there a model that natural ly makes long-

range comparisons? Need a new idea.

[image source] 22

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fuser-images.githubusercontent.com%2F35737777%2F68632479-95c61f80-04e6-11ea-80b2-2e86a4fcc258.jpg&f=1&nofb=1&ipt=bdd53181deb9f85031865a6b3a41ef3d6543314bb66ae9dd2169546795433858

Roadmap: first NLP, then Vision

Natural Language Processing also has the long-range comparisons problem.

Consider:

 "The animal didn't cross the street because it was too tired."

The equations for Self-Attention arose in NLP. Then we f igured out how to use the
same model in vision. I’ ll present the NLP version of Attention f irst.

23

Illustrative Example: Attention

Some words mostly

carry stand-alone
meaning.

Other words’ meaning
are highly context-
dependent.

In these examples,
which words are the
correct context for
interpreting the word

“it”?

[image source] 24

https://karthikeyanvk.medium.com/an-out-and-out-view-of-transformer-architecture-6926da4c8080

Some formalisms

We’re given a sentence. We want to train

an encoder to understand it.

Number the words in the sentence:

𝑤1 , 𝑤2 , … , 𝑤𝑁𝑤
.

Words aren’t very convenient for

computation. We’ll embed each word in

an 𝑁𝑒 dimensional embedding space.

Call these embedding vectors 𝑥1 , 𝑥2 , … , 𝑥𝑁𝑤

[image source] 25

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fwww.corpnce.com%2Fwp-content%2Fuploads%2F2023%2F12%2Fword-embedding-space-corpnce.png&f=1&nofb=1&ipt=f0374e640a6ece6e1a8c13fe2294e6bdc7a8ba3c708fae0f69e2507fbc6ab4cb

Some formalisms

Let’s pick one word (say, 𝑤𝑗) from

the sentence. We’ll just talk about

how to understand that word. Which

of the other words are relevant?

𝑤𝑗

𝑤1 𝑤2 𝑤3 … 𝑤𝑁𝑤

? ? ? ? ? ?

Is there some sort of “similarity”

funct ion 𝑓(𝑤𝑗 , 𝑤𝑖) that can measure
the relevance of each word 𝑤𝑖 to

understanding 𝑤𝑗 ?

We wouldn’t want to code that
imperatively, but it makes a great

machine learning problem.

*Footnote: if this was an NLP class, we’d talk about how

“words” aren’t quite the right thing to use here. Instead,
NLP uses “tokens”. But “words” is close enough for what
we’re doing today. 26

Learned similarity functions

The dot product is a sort of similar ity

function. It ’s eff icient to compute and lends

i tself wel l to both theory work and to

vectorized code.

But the dot product doesn’t have parameters.

It can’t learn an attention relationship between

words.

27

Learned similarity functions

This is the normal dot product:

𝑞 ⋅ 𝑘 = 𝑞 𝑘 ⊤

where 𝑞 = 𝑞1 , 𝑞2 , … , 𝑞𝑁𝑒
 and 𝑘 = 𝑘1 , 𝑘2 , … , 𝑘𝑁𝑒

 are 1 × 𝑁𝑒 row vectors.

Here’s the generalized dot product:

𝑞 ⋅ 𝑘 = 𝑞 𝑊𝑞 𝑊𝑘
⊤ 𝑘 ⊤

where 𝑊𝑞 and 𝑊𝑘 are 𝑁𝑒 × 𝑁𝑠 matrices of learnable parameters. We’l l

train our model to pick parameters.

28

Queries and keys

Let’s start using the vocabulary of attention. Our word of interest is

our query: 𝑞 = 𝑥𝑗 . We want to know if a key 𝑘 = 𝑥𝑖 is relevant

context to our query.

So we compute the general ized dot product 𝛼 𝑖𝑗 = 𝑞 𝑊𝑞 𝑊𝑘
⊤ 𝑘 ⊤ .

Summary: we have a learned similar ity function that measures

whether a given key is relevant context for a given query. Matrices

𝑊𝑞 and 𝑊𝑘 parameterize the function.

29

Queries and keys, vectorized

Recall: we compute the generalized dot product 𝛼𝑗𝑖 = 𝑞 𝑊𝑞 𝑊𝑘
⊤ 𝑘 ⊤ .

Do that for al l keys, not just one. If we stack the keys row by row

into an 𝑁𝑤 × 𝑁𝑒 matrix, then we can compute

𝛼𝑗1 … 𝛼𝑗 𝑁𝑤 = 𝑞 𝑊𝑞 𝑊𝑘
⊤

𝑘1

𝑘2

⋮

𝑘𝑁𝑤

⊤

Since the keys are just our embedded words, let’s write

so the expression becomes 𝑞 𝑊𝑞 𝑋𝑊𝑘
⊤ .

𝑘1

𝑘2

⋮

𝑘𝑁𝑤

⊤

=

Ԧ𝑥1

Ԧ𝑥2

⋮
Ԧ𝑥𝑁𝑤

⊤

= 𝑋,

30

Queries and keys, interpreted

Let’s interpret this expression:

𝛼𝑗1 … 𝛼𝑗 𝑁𝑤 = 𝑞 𝑊𝑞 𝑋𝑊𝑘
⊤

Each 𝛼𝑗𝑖 is a number representing how

relevant word 𝑤𝑖 is for understanding

word 𝑤𝑗 .

Bigger numbers mean highly relevant

context (pay attention to this word!)

and smaller numbers are not relevant.

[Actual attention in a real trained

transformer, courtesy of Jay Alammar] 31

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Softmax

The vector 𝛼𝑗1 … 𝛼𝑗 𝑁𝑤 is real-valued. Each number is a decimal.

The softmax function transforms real -valued vectors into probabi li ty vectors.

real-valued vector

all positive numbers

that sum to 1

32

Softmax

softmax(𝛼𝑗1 … 𝛼𝑗 𝑁𝑤) spli ts word 𝑤𝑗 ’s

attention over al l of the input words, and

𝑤𝑗 ’s total attention adds up to 100%.

33

Decide on the meaning of a word

Our model is going to interpret words l ike

this:

1. Assign each word a provisional “on -its-

own meaning”

2. Reassign final meanings based on the

attention calculation from before.

34

Decide on the meaning of a word

1. Assign each word a provisional

“on-its-own meaning”

Our lingo for a word meaning will

be value. The value 𝑣 𝑗 of word 𝑤𝑗

is

𝑣𝑗 = 𝑥𝑗 𝑊𝑣

Where 𝑊𝑣 is a 𝑁𝑤 × 𝑁𝑜 matr ix of

learnable parameters.

2. Reassign final meanings based on

the attention calculation from

before:

𝑧𝑗 = ∑𝛼𝑗𝑖 𝑣𝑖

𝑧𝑗 is the output. It ’s our “meaning”

of word 𝑤𝑗 .

35

More vectorizing:

Vectorize 𝑣𝑗 = 𝑥𝑗 𝑊𝑣: We get 𝑉 = 𝑋𝑊𝑣 .

Vectorize 𝛼𝑗1 … 𝛼𝑗 𝑁𝑤 = 𝑞 𝑊𝑞 𝑋𝑊𝑘
⊤ . We get

𝛼11 ⋯ 𝛼1𝑁𝑤

⋮ ⋱ ⋮
𝛼𝑁𝑤 1 ⋯ 𝛼𝑁𝑤 𝑁𝑤

= 𝑋𝑊𝑞 𝑋𝑊𝑘
⊤

36

The final form of the attention equations:

With input 𝑤1 , … , 𝑤𝑁𝑤
, embed the words to get row vectors

𝑥1 , … , 𝑥𝑁𝑤
. Stack these into 𝑁𝑤 × 𝑁𝑒 matrix 𝑋 .

Write 𝑄 = 𝑋𝑊𝑞 , 𝐾 = 𝑋𝑊𝑘 , and 𝑉 = 𝑋𝑊𝑣 .

Return 𝑍 = softma x
𝑄 𝐾 ⊤

𝑑𝑠
𝑉

I snuck this 𝑑𝑠 in. It’s not conceptually
important, but does give more stable

training (for stats reasons). 𝑑𝑠 is the
dimension of our similarity dot product:

𝑊𝑞 and 𝑊𝑘 are 𝑁𝑒 × 𝑁𝑠 matrices.

There’s a minor notational ambiguity here.

Understand this to mean that softmax is being
applied row-by-row to this matrix. So each
query’s attention adds up to 100% 37

Attention equations, visualized:

[figures courtesy of Jay Alammar]

38

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

TRANSFORMERS

39

Small tweak, big performance boost:

Multi-headed Attention:

Do the attention equations

multip le t imes in paral lel.

Learn different weights for

each “attention head”.

Merge the outputs from

each attention head to

make the combined output.

40

Stack attention layers, with a little
nonlinearity

The feed-forward block is

a simple stack of two of

three l inear neural

network layers, with a

standard nonlinearity (like

ReLU) after each one.

I’m sk ipping the “Positional

Encoding” today because

research is moving fast in

that area and it hasn’t

settled down yet.

repetit ion = stacked layers

[figure from the original paper

introducing transformers: “Attention
is all you need, Polosukhin et al.]

41

https://arxiv.org/abs/1706.03762

Does it work?

Transformer models model long-range relat ionships in text ef fortlessly.

Transformer models require mind-boggling amounts of time and data to train.

Famous Transformer models:

• ChatGPT (generative pre-trained transformer)

• Best est imate: fi rst training run cost $12M in compute

• Trained on ~45TB of text

• Google Gemini

• Claude

42

VISION

TRANSFORMERS

43

How do we adapt transformers to vision?

Transformers were invented as sequence models. Images aren’t sequences

l ike sentences are.

Newer way of thinking:

• A transformer is a model that takes a set of tokens and encodes their

meaning as a latent space vector.

What serves the role of tokens in an image? Why not patches?

44

Image patches are our words

1. Chop the image

into patches

2. Embed each patch

(just like we did

with words)

3. Apply the same

transformer layers

we used for words

[figure source]
small lie! A few other things change too. But

the differences are practical, not conceptual.

(we’re still

ignoring this)

45

https://www.researchgate.net/figure/sion-Transformer-encoding-The-image-is-split-into-fixed-size-patches-linearly-embedded_fig1_353284955

What does it mean?

Our model is computing

a vector represent ing

the “meaning” of each

patch.

Each patch’s meaning is

contextual ly

dependent.

The Transformer learns

which other patches

matter for

understanding this one.

[figure source]

46

https://www.researchgate.net/figure/sion-Transformer-encoding-The-image-is-split-into-fixed-size-patches-linearly-embedded_fig1_353284955

Does it work?

Vision transformers are the encoders for

lots of models you might have heard of:

• DALL-E 2 and DALL-E 3 (OpenAI)

• GPT4V (GPT4 with Vision, OpenAI)

• Segment Anything (Meta AI)

• Imagen (Google)

• Firefly (Adobe)

47

How do you train one?

We know training a Vision Transformer will be expensive. But we

plan to reuse it as an encoder in lots of other tasks.

What tasks do we train the encoder on?

• Image classification (lots of training data)

• Masked Image Model ing (f i ll in holes in images. Infinite free

training data!)

• Contrastive Learning (this is more advanced. Train to make

similar images encode to similar vectors, and dissimilar

images encode to dissimilar vectors)
48

	Untitled Section
	Slide 1: CS 1053 TRANSFORMERS 1/27/26 Slides borrowed/adapted from Kyle Wilson (thanks Kyle!)
	Slide 2: Plan for today
	Slide 3: What’s missing from CNNs?
	Slide 4: What’s missing from CNNs?
	Slide 5: Encoders and Decoders
	Slide 6: Recall: CNNs are hierarchical functions
	Slide 7: Recall: CNNs are hierarchical functions
	Slide 8: Imagine “slicing” a network in half
	Slide 9: Imagine “slicing” a network in half
	Slide 10: There’s a natural place to slice this network.
	Slide 11: The space in-between is called the latent space.
	Slide 12: Why are some splits special?
	Slide 13: Interpretable Latent Spaces
	Slide 14: Interpretable Latent Spaces
	Slide 15: Latent Spaces: summary
	Slide 16: Latent Spaces are useful!
	Slide 17: Latent Spaces are useful!
	Slide 18: Latent Spaces are useful!
	Slide 19: Check-in: What’s missing from CNNs?
	Slide 20: Attention
	Slide 21: Framing the problem
	Slide 22: Framing the problem
	Slide 23: Roadmap: first NLP, then Vision
	Slide 24: Illustrative Example: Attention
	Slide 25: Some formalisms
	Slide 26: Some formalisms
	Slide 27: Learned similarity functions
	Slide 28: Learned similarity functions
	Slide 29: Queries and keys
	Slide 30: Queries and keys, vectorized
	Slide 31: Queries and keys, interpreted
	Slide 32: Softmax
	Slide 33: Softmax
	Slide 34: Decide on the meaning of a word
	Slide 35: Decide on the meaning of a word
	Slide 36: More vectorizing:
	Slide 37: The final form of the attention equations:
	Slide 38: Attention equations, visualized:
	Slide 39: Transformers
	Slide 40: Small tweak, big performance boost:
	Slide 41: Stack attention layers, with a little nonlinearity
	Slide 42: Does it work?
	Slide 43: VISION Transformers
	Slide 44: How do we adapt transformers to vision?
	Slide 45: Image patches are our words
	Slide 46: What does it mean?
	Slide 47: Does it work?
	Slide 48: How do you train one?

