


Okay but the data...



(Sharp?) left turn:
Embeddings, Manifold Learning, and Autoencoders
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Unsupervised / self-supervised learning case study: SimCLR

A Simple Framework for Contrastive Learning of Visual Representations

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Figure 4. lllustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)



Unsupervised / self-supervised learning case study: SimCLR
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DINO - Selt-Supervised Learning
Image Features
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Generative Modeling

P( Y ) X) C&igc( WAACRVE, % @
&
)0 ( X 3) Genca g @

P(x.y)



...with autoencoders
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Generative Adversarial Networks
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Diffusion Models

Original image Step 50 Step 100 tep 30 Step 500

Step 800 Step 999
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Some other good visuals: https://www.chenyang.co/diffusion.html



https://www.chenyang.co/diffusion.html
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Flow Models









Stable Diffusion
(without the conditioning)
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Vision and Language



Case study: CLIP

(1) Contrastive pre-training
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unCLIP aka DALL-E 2
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Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.
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