CS401 - Problem Set 10 - the last one!

1. What class $(\Sigma_2 \text{ or } \Pi_2)$ is the following language in:

 $L = \{\phi : \text{ there is exactly one satisfying assignment to the Boolean formula } \phi\}.$ (1)

2. The class **DP** is the set of languages L for which there exist two languages $L_1 \in \mathbf{NP}$ and $L_2 \in \mathbf{coNP}$ such that $L = L_1 \cap L_2$. Let

EXACT INDSET =
$$\{\langle G, k \rangle : \text{ the largest set of vertices where no vertex in the set}$$
 has an edge to any other vertex in the set has size $k \}$. (2)

Prove

- (a) EXACT INDSET $\in \Pi_2^p$
- (b) EXACT INDSET \in **DP**
- (c) Prove $\mathbf{DP} \subseteq \mathbf{\Pi}_2^p$.
- 3. In class, to prove that $\mathsf{BPP} \in \Sigma_2 \cap \Pi_2$, we only prove that $\mathsf{BPP} \in \Sigma_2$. We said that this implies the main result because $\mathsf{BPP} = \mathsf{coBPP}$, which you prove in Quiz 9. Use the facts that $\mathsf{BPP} = \mathsf{coBPP}$ and $\mathsf{BPP} \subseteq \Sigma_2$ to prove $\mathsf{BPP} \subseteq \Sigma_2 \cap \Pi_2$.
- 4. Prove that if $3SAT \leq_p \overline{3SAT}$, then PH = NP. (The PH collapses to NP).