Goals

- Prove can't prove P=NP using simulation
- Define Probabilistic computation classes

Announcements

- Pet photos
- 3 weeks!

Im: 30: P°≠NP° Proof Strategy: Create oracle B by: · Enumerate all oracular TM's ЕB $M_{1}^{O}, M_{2}^{O}, M_{3}^{O}$... · Starting at i=1, (and repeating, for each successive i=2;3,4,..., \bigcirc 1 Mi (will tell how to pick) O()pick and run Mi on input 1ⁿⁱ 10for time $(N_i)^c$. Note $|1^{N_i}| = N_i$. 1001 · Pick Mi to be smallest # s.t. $-(N_i)^i < 2^{N_i}$ - No string of length vi has be assigned $[|nitially, N_1 = ?]$ $N_1 = 1 b/c - 1 22$ - NO Strings assigned · Run Milli for (ni) steps starts running Query YEB? V list if y not already

Look at our list.
If y already
decided, decide
If y already
decided, answer
consistently
If
$$M_i^B(1^{n_i})$$
 doesn't terminate or outputs 1,
set all y s.t. $|y| \leq n_i$ that haven't been
gveried to "No" in B. (All y s.t. $|y|=n_i$ will be No.)
If $M_i^B(1^{n_i})$ outputs 0, set one string
of length n_i to be "Yes" in B, and all of
other Unqueried y, $|y| \leq n_i$ to be "No"
• There are A^{n_i} strings of length n_i
• B/c only $(n_i)^i$ steps, only $(n_i)^i$ of
them could be gueried and so assign.

Now consider the language

$$L_B = \xi 1^n : \exists y \in B \text{ s.t } |y| = n \xi$$

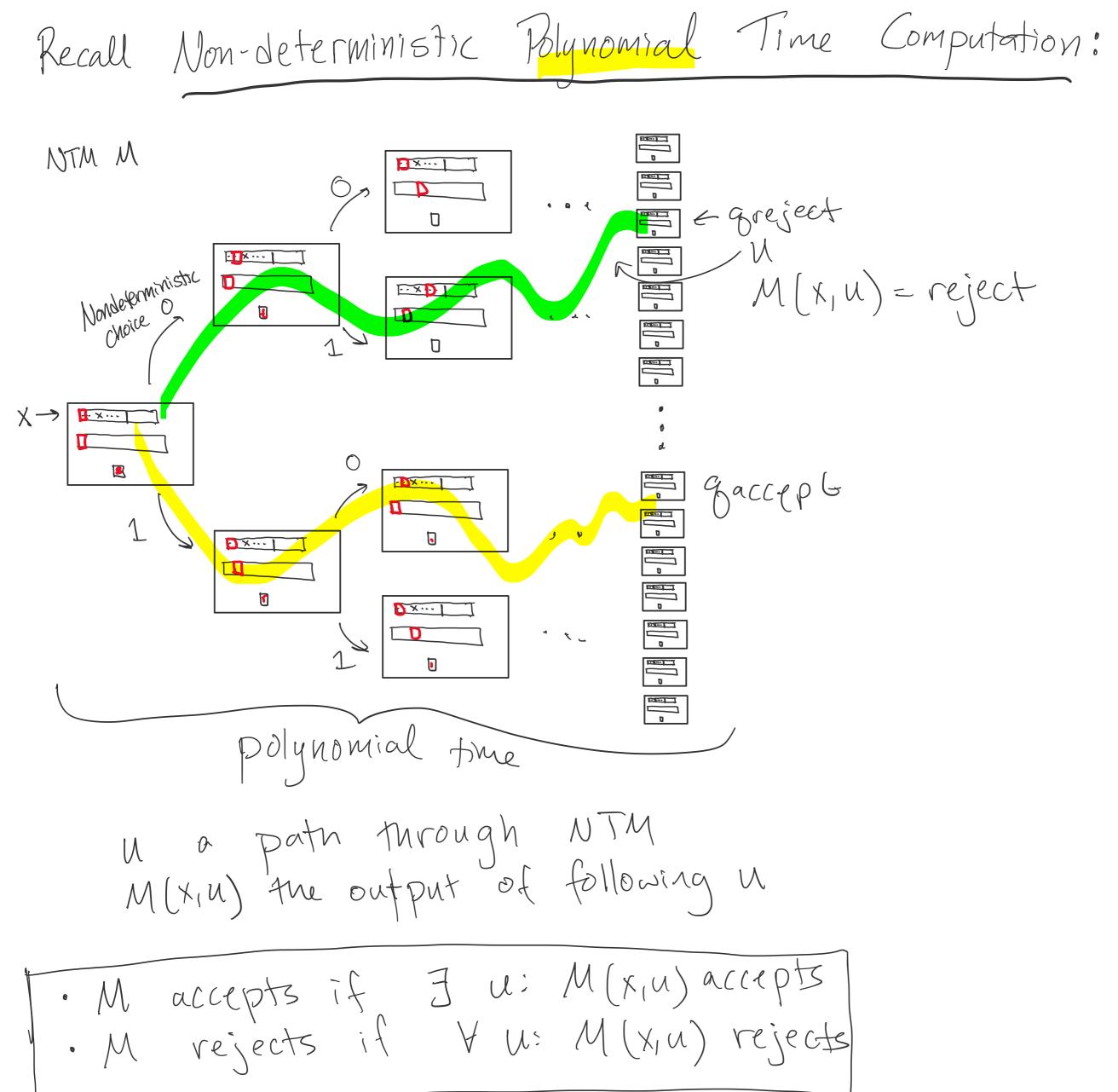
Thus:
$$L_{B} \notin P^{B}$$

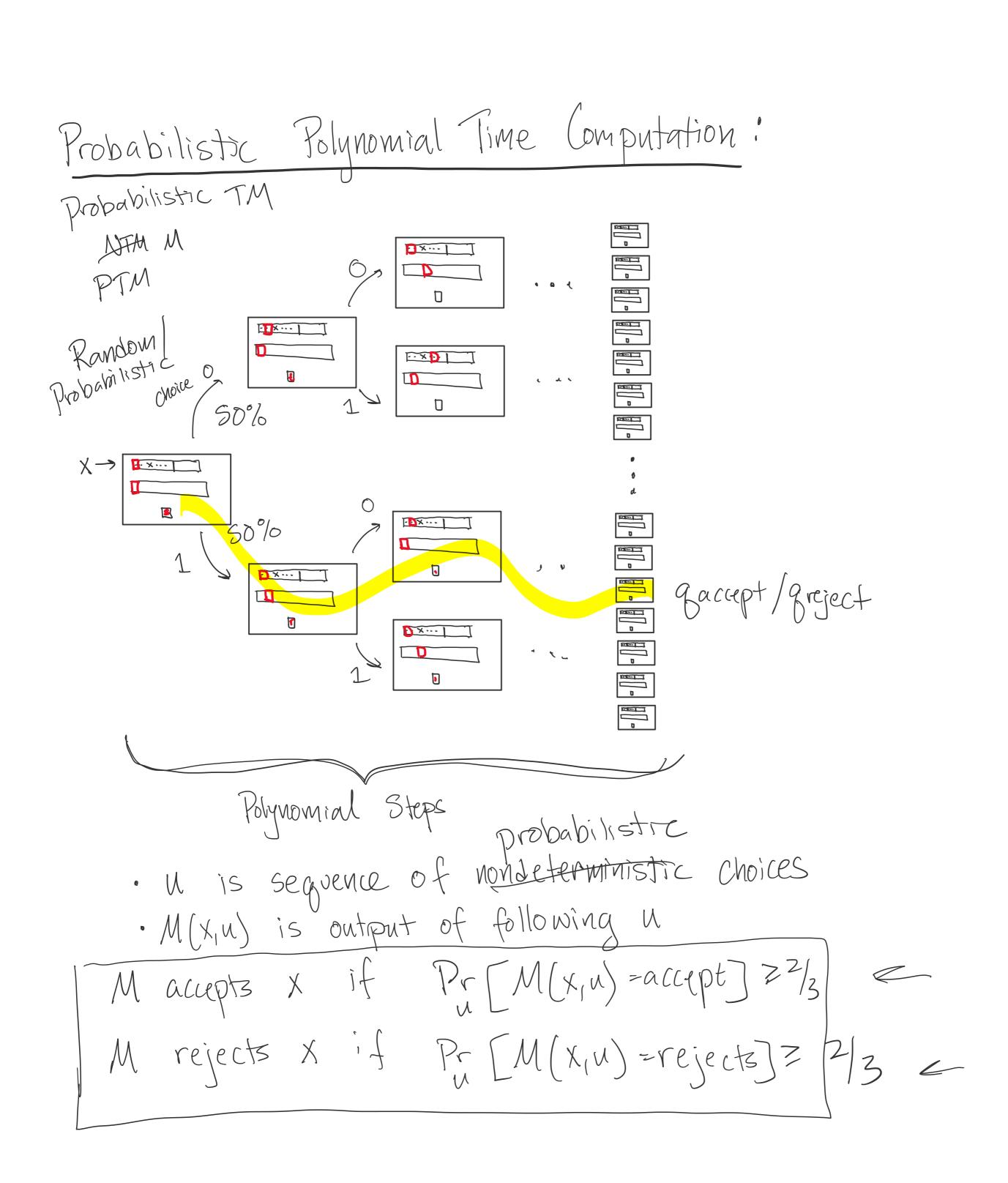
Suppose for contradiction that $L_{B} \in P^{B}$. Then there is
TM M^B that decides L_{B} in Cn^{d} time, for some
constants d, C. Let x be a number s.t.
 $M_{x}^{B} = M^{B}$ s.t. $N_{a}^{X} > Cn_{a}^{d}$. But then $M_{a}(1^{d})$
will hincorrect by our construction of B.
Thus $L_{B} \in NP^{B}$
Let $M^{B}(x,u)$ be the TM that accepts if
 $x = 1^{n}$ for some u
 $\cdot |u| = n$
 $\cdot M^{B}$ guerness if $u \in B$ and gets answer yes
 $M^{B}(x,u)$ runs in polynomial time

Thus:

9s Probabilistic Computation

Wednesday, April 20, 2022 1:19 PM





BPP (Bounded Probabilistic Polynomial Time) LEBPP if Z a probabilistic TM M, M should halt in polynomral time regardless of its random choices and $\forall x \in \{0, 15\}^*$. If $x \in L \rightarrow M$ accepts . If $x \notin L \rightarrow M$ rejects