7s Separations PENP Thursday, April 7, 2022 P=NP? NPCEXPJ NP = EXP? P ≠ EXP IND Strategy: Diagonalization ex: un décidable languages (301) ex: 12/4/R/ (200) Tool: Universal TM U > U simulates any other Facts; O. Y & e 20,13t, & represents a TM Mx D. Y TM M, there are infinitely many & s.t. $M = M_{\chi}$ Max input 3. U takes as input $\langle x, x \rangle$ and $\mathcal{U}(\alpha, \alpha)$ $\mathcal{M}(\alpha, x) = \mathcal{M}_{\alpha}(x)$ $\mathcal{M}(\mathcal{M}_{\alpha}, x)$.] c' (a constant) s.t. - If M2(x) takes time t - Then U(x,x) takes time c'tlogt Theorem: DTIME (n) C DTIME (n1.5) Idea: Create L s.t. LEDTIME (nº1.5) But L & DTIME(u). Step 1: Creat L input string x $f(\alpha, x) = \begin{cases} 0 & \text{if } U(\alpha, x) \text{ does not terminate in } |x|^{1.4} \end{cases}$ $\begin{cases} 1 & \text{if } U(\alpha, x) \text{ accepts in } |x|^{1.4} \text{ steps} \end{cases}$ $L = \{ \{ \{ \{ \{ \{ \}, \{ \} \} = 0 \} \} \} \}$ ex $L = \{ \{ \{ \}, \{ \} \} \}$ Step 2: LE DTIME (N.S) · Run U(x, x) for $|x|^{1.4}$ steps . Accept if U has not terminated, or if $U(x_i \times)$ rejects . Reject otherwise Step 3: L & DTIME (n) · For contradiction, assume LEDTIME(n) · Then I a TM M s.t. M(x) accepts iff XEL and M(x) always terminates in CIXI Steps for some constant c. 6 This means $\forall \alpha$ s.t. $M_{\alpha} = M$, $\mathcal{U}(\alpha, \alpha)$ terminates m · c'tlogt = c'c/x/log(c/x/) Pick a large enough 2th s.t. · Pick X* s.t. · M x = M · | x * | 1.4 > c'c | x * | log (c|x*) => U(x*,x*) terminates in less than |x*|1.4 Case 1: x EL · By def of L, f(x*, x*)=0 · By def of f, $U(x^*, x^*)$ doesn't terminate in 1 xx11.4 steps, or rejects · By A+V, U(x*,x*) terminates in less than 12*11.4 steps, so M(2*, x*) must reject in at most /2*/14 skps · By def $U(x^*, x^*)$ $\mathcal{U}(\mathcal{Z}^{*},\mathcal{Z}^{*})=\mathcal{M}_{\mathcal{Z}^{*}}(\mathcal{Z}^{*})=\mathcal{M}(\mathcal{Z}^{*})$ rejects = a contradiction, since M decides 1 · By def of L, then f(2*, x*)=1 · By def off, $\mathcal{U}(x^*, x^*)$ accepts in $|x^*|^{1.4}$ · By def $U(x^*, \alpha^*)$ $\mathcal{M}(\mathcal{A}^{*}, \mathcal{A}^{*}) = \mathcal{M}(\mathcal{A}^{*}) = \mathcal{M}(\mathcal{A}^{*})$ accepts, a contradiction, since M decides !