Thursday, February 24, 2022 1:27 PM Goals Place NP in our map Define NP-Hard Prove Problems are NP-Hard Let LEP. Then J a polytone TM M Such that XEL iff M(x) = 1. (Let P be the constant function p(n) = 1.) the TM that on input (X, u) for $u \in \{0,1\}^{p(n)}$ ignore u and and apply M to x and output to LENP result. Men if XEL, then JUESO, 13PM such that M'(x,u) accepts. If x & L then \(\frac{1}{2} \text{P(u)} \) M'(x,u) rejects. Since M' runs in polytime and u is polysized in X, we have LENP. NPEEXP Let LENP, Then there exists a TMM and a polynomial p s.t XEL iff JUEZO113P(N) s.t. M(X1U)=1. Let M' be the TM that on input X, For every U & \(\frac{20}{113}P(n) \) Output O Then $X \in L$ iff M(x) accepts. M' runs in $O(2^{n^d})$ (exponential time). def: [*ENP-Hard if YLENP L5/L* Solves L* . Lt is hard to solve · Need powerful resources to solve Lt (at least NP type resources) Idea: Reductions 3SAT & NP-Hard (FACT) (=DL* ENP-Hard 3SAT & L* (We prove) Solve L Solves L* SSAT = S(X): X is a CNF formula with a satisfying assignment and at most 3 literals in AND CNF Formula: 025 $\left(u_{1} \sqrt{\neg u_{2}} \sqrt{\neg u_{4}} \right) / \left(u_{1} \sqrt{u_{3}} \sqrt{u_{4}} \right) / \left(\neg u_{1} \sqrt{u_{3}} \sqrt{u_{3}} \right)$ Clause literals Assignment: U= True U2 = False Un = False Group Work: Prove NP-Hard · OIPROG = ZX: X is a set of inequalities with rational coefficients and has a satisfying assignment with assignments 0 or 1 = $ex: \frac{1}{2}u_1 - \frac{3}{10}u_2 + \frac{8}{9}u_3 \ge 1/9$ Assignment: $u_1 = 0$ -5-11, + 3 U3 + 10 U4 2-2/5 · CUBIC = {X: X is a set of binary cubic equations with a satisfying assignment } $U_1 \cdot U_1 \cdot U_1 + U_2 \cdot U_3 \cdot U_3 + U_1 \cdot U_2 \cdot U_3 = 0$ U, Uz. Uy + Uz. Uy. Uy = 1 M = 0W2 = 1 ±1 U, + ± 1 Uz + ± 1 Uz > int. / b/t 1 and -2 incl. $U_1 \cdot U_2 \cdot U_3 = Q$ SSAT OIPROG Solution U = True =>> U = 1 $u_i = False \longrightarrow u_i = 0$ o 0/PRD61 $U_1 + U_2 + U_3 = 1$ U_1 U_2 V_3 1.800 1.81 1.81 1.82 1.83 $U_1 - U_2 - U_3 \ge -1$ U_1 V_1U_2 V_1U_3 $-W_{1}$ - W_{2} - W_{3} ≥ -2 $\neg u_1 \vee \neg u_2 \vee \neg u_3$ $U_1 = True \quad \text{in 3SAT} \rightarrow \qquad U_1 = 1 \quad \text{in CuBic}$ $U_1 = True \quad \text{in 3SAT} \rightarrow \qquad U_2 = 0$ CUBIC $U_1 = False in 3SAT \rightarrow U_1 = 0$ $U_1 = 1$ $U, \pm \overline{U}, = 1$ $U, U, U, U, \pm \overline{U}, \overline{U}, = 1$ $M_1 \sqrt{3} \sqrt{3}$