
CS333 - Math for Quantum

1 Complex Numbers

A complex number is written as a + bi, where a, b ∈ R and i =
√
−1. It is useful to think

about complex numbers as points on a plane:

If x = a + bi, then the complex conjugate of x, denoted x∗, is a − bi. If w and x are
complex numbers, then

(wx)∗ = w∗x∗

(w + x)∗ = w∗ + x∗ (1)

Question: If we think of complex numbers as points on a plane, and conjugation as a
function that takes a complex number to its conjugate, how does the operation of conjugation
transform points on a plane?
Solution: It acts as a reflection over the x-axis (the real axis). (A reflection flips points
over an axis of reflection.)

For w ∈ R, Euler’s formula is the following:

eiw = cos(w) + i sin(w). (2)

This formula lets us use a complex exponential to represent complex numbers.
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Question: If w ∈ R, which of the following is the complex conjugate of eiw?

e−iw, cos(w)− i sin(w), − cos(w) + i sin(w), ew (3)

Solution: e−ix and cos(x)− i sin(x)

If x = a + bi, we denote the magnitude of x as |x|, where |x| =
√
xx∗.

Question: Explain why |eix| = 1 twice. The first time, use the eix representation, and the
second use the cos(x) + i sin(x) representation. Note: a0 = 1 for any non-zero number a.
Also, note: abac = ab+c. Finally, note: cos2(a) + sin2(a) = 1 for any real number a.
Solution: First, we have |eix| =

√
eixe−ix =

√
eix−ix =

√
e0 =

√
1 = 1. Then, we also have

|eix| = | cos(x) + i sin(x)| =
√

(cos(x) + i sin(x))(cos(x)− i sin(x)) =
√

cos2(x) + sin2(x) =√
1 = 1.

Question: What is a simpler expression for ei3π/2, and where does it appear as a point on
the plane?
Solution: ei3π/2 = −i, and it is the a point on the negative y-axis a distance 1 from the
origin.

2 Vector Spaces

We will deal with vector spaces Cd. Cd is the set of column vectors of length d (dimension
d) whose elements are complex numbers. So for example 1

i
e2i

 ∈ C3. (4)

If x ∈ Cd, then the conjugate transpose of x, denoted by x†, is the d-dimensional row
vector where the jth element of x† is the complex conjugate of the jth element of x. For
example, if

x =

 1
i
e2i

 then x† =
(

1, −i, e−2i
)
. (5)

More generally, if you have a matrix A, then A† denotes the conjugate transpose of A,
where you take the transpose of the matrix, and then take the complex conjugate of each
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element. For example

(
1, 2, 3
−1i, −2i, −3i

)†
=

 1, 1i
2, 2i
3, 3i


Given vectors x,y ∈ Cd, we can take the inner product y†x by doing matrix multiplication

between y† and x. That is: y†x =
∑d

i=1 y
∗
i xi, where xi is the ith element of x and yi is the

ith element of y. For example, if x is as above, and y =

 i
1 + i

2

, then

y†x =
(
−i, 1− i, 2

) 1
i
e2i

 = −i× 1 + (1− i)× i + 2× e2i = −i + i + 1 + 2e2i

= 1 + e2i. (6)

Question: If x =

(
1
i

)
and y =

(
1
−i

)
, what is y†x? What is x†y?

Solution: y†x = x†y = 0.

Question: If x,y are any vectors in Cd, explain why
(
y†x
)∗

= x†y.
Solution: Using the rules for adding and multiplying complex numbers, we have

(
y†x
)∗

=

(
d∑
i=1

y∗i xi

)∗
=

d∑
i=1

(y∗i xi)
∗ =

d∑
i=1

(y∗i )
∗ (xi)

∗ =
d∑
i=1

yix
∗
i = x†y. (7)

Question: Show that the inner product follows the distributive property. That is, if x,y, z ∈
Cd, explain why z† (x + y) = z†x + z†y.
Solution: Using the definition of inner product, we have

z† (x + y) =
d∑
i=1

z∗i (xi + yi) =
d∑
i=1

z∗i xi + z∗i yi =

(
d∑
i=1

z∗i xi

)
+

(∑
j∈d

z∗j yj

)
= z†x + z†y.

(8)

A basis for a vector space Cd is a set of vectors {v1, . . .vd} such that for every vector
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x ∈ Cd, there is a unique set of complex numbers {a1, . . . , ad} such that

x =
d∑
j=1

ajvj. (9)

If you have a set of d vectors {v1, . . .vd} each in Cd such that

v†jvk =

{
1 if j = k

0 if j 6= k,
(10)

then they form a basis for Cd. We call such a basis an orthonormal basis. Orthonormal com-
bines the words “orthogonal” which refers to two vectors whose inner product is orthogonal,
and “normal” which refers to a vector whose inner product with itself is 1.

For example you can verify that:

v1 =
1√
2

(
1
i

)
, v2 =

1√
2

(
1
−i

)
(11)

from an orthonormal basis for C2 because there are two of them, and they satisfy Eq. (10).
In quantum computing, we will exclusively deal with orthonormal bases.

Given a vector x ∈ Cd, it is often helpful to write that vector in terms of a given
orthonormal basis {v1, . . .vd}. In other words, we would like to find the complex numbers
aj as in Eq. (9). When {v1, . . .vd} is an orthonormal basis, finding this decomposition is

fairly straightforward. We can apply v†i to both sides of equation Eq. (9):

v†ix = v†i

(
d∑
j=1

ajvj

)

=
d∑
j=1

ajv
†
ivj

= ai (12)

where the second line comes from the distributive property, and the final line comes from
Eq. (10).
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Question: Consider the orthonormal basis {v1,v2} for C2 where v1 = 1√
2

(
1
1

)
and

v2 = 1√
2

(
1
−1

)
. Write x = 1√

2

(
1
i

)
in this basis. (In other words, write x = a1v1 + a2v2

for some complex numbers a1 and a2.)
Solution: We have

v†1x =
1

2
(1 + i)

v†2x =
1

2
(1− i) (13)

so

x =
1

2
(1 + i)v1 +

1

2
(1− i)v2. (14)

Let Cn×m denote the set of matrices with n rows and m columns and complex elements.
Let A ∈ Cn×m and B ∈ Cp×q. Then the tensor product (technically the Kronecker product)
of A and B is denoted by A⊗B. If the element in the ith row and jth column of A is Aij,
then

A⊗B =


A11B, A12B, . . . A1mB
A21B, A22B, . . . A2mB

...
...

...
...

An1B, An2B, . . . AnmB

 .

For example,

(
1, 2, 3
−1, −2, −3

)
⊗

 0
1
i

 =


1

 0
1
i

 , 2

 0
1
i

 , 3

 0
1
i


−1

 0
1
i

 , −2

 0
1
i

 , −3

 0
1
i



 =


0 0 0
1 2 3
1i 2i 3i
0 0 0
−1 −2 −3
−1i −2i −3i

 .

Question: If A is an n ×m matrix and B is a p × q matrix, what are the dimensions of
A⊗B?
Solution: A⊗B will be an np×mq matrix. This is because we will have m copies of B in
the horizontal direction, and since each copy of B itself takes up q columns, the new matrix
will have mq columns. Then in the vertical direction, there are n copies of B, and each copy
has p rows, for np total rows.
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The tensor product has the following properties:

x⊗ y = xy (15)

A⊗ (B + C) = A⊗B + A⊗C (16)

(B + C)⊗A = B⊗A + C⊗A (17)

(A⊗B)† = A† ⊗B† Note! the order stays the same! (18)

(A⊗B) · (C⊗D) = A ·C⊗B ·D, (19)

where · denotes regular matrix multiplication. (The first line means that if you just have
numbers rather than matrices, the tensor product is just the regular product.)

Question: Consider the orthonormal basis {v1,v2} for C2 where v1 = 1√
2

(
1
1

)
and

v2 = 1√
2

(
1
−1

)
. Show that {v1 ⊗ v1,v1 ⊗ v2,v2 ⊗ v1,v2 ⊗ v2} is an orthonormal basis

for C4.
Solution: Using the definition of tensor product, we have that

{v1 ⊗ v1,v1 ⊗ v2,v2 ⊗ v1,v2 ⊗ v2} =


1

2


1
1
1
1

 ,
1

2


1
−1
1
−1

 ,
1

2


1
1
−1
−1

 ,
1

2


1
−1
−1
1




(20)

You can check that Eq. (10) is satisfied by these vectors, and since there are 4 of them, they
form an orthonormal basis for C4.
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Question: In this problem, we’ll show that the previous problem generalizes. Suppose we
have an orthonormal basis {v1, . . . ,vd} for Cd, and an orthonormal basis {u1, . . . ,uf} for
Cf . Show that the set of vectors consisting of all possible pairs of tensor products vi ⊗ uj
form an orthonormal basis, and say which space they form a basis for. (Use the tensor
product properties!)
Solution: Since there are d vectors in the first set and f vectors in the second set, the
number of possible pairs of vectors is df . Now if we take the inner product of two of the
vectors, we have, using Eq. (18)

(vi ⊗ uj)
† · (vk ⊗ ul) = (v†i ⊗ u†j) · (vk ⊗ ul). (21)

Using Eq. (19), we have

(v†i ⊗ u†j) · (vk ⊗ ul) = (v†ivk)⊗ (u†jul). (22)

Because {v1, . . . ,vd} and {v1, . . . ,vf} are orthonormal bases, we will get terms that are
either 0⊗ 0 = 0, 0⊗ 1 = 0, 1⊗ 0 = 0 or 1⊗ 1 = 1. The only time we get 1 is when i = k and
j = l, which is when we take the inner product of a basis vector with itself, and otherwise
we get 0. Note that these vectors are elements of Cdf , so since they fulfil Eq. (10), they form
an orthonormal basis for Cdf .
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