
CS333 - Math for Quantum

1 Complex Numbers

A complex number is written as a + bi, where a, b ∈ R and i =
√
−1. It is useful to think

about complex numbers as points on a plane:

If x = a + bi, then the complex conjugate of x, denoted x∗, is a − bi. If w and x are
complex numbers, then

(wx)∗ = w∗x∗

(w + x)∗ = w∗ + x∗ (1)

Question: If we think of complex numbers as points on a plane, and conjugation as a
function that takes a complex number to its conjugate, how does the operation of conjugation
transform points on a plane?

For w ∈ R, Euler’s formula is the following:

eiw = cos(w) + i sin(w). (2)

This formula lets us use a complex exponential to represent complex numbers.

Question: If w ∈ R, which of the following is the complex conjugate of eiw?

e−iw, cos(w)− i sin(w), − cos(w) + i sin(w), ew (3)
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If x = a + bi, we denote the magnitude of x as |x|, where |x| =
√
xx∗.

Question: Explain why |eix| = 1 twice. The first time, use the eix representation, and the
second use the cos(x) + i sin(x) representation. Note: a0 = 1 for any non-zero number a.
Also, note: abac = ab+c. Finally, note: cos2(a) + sin2(a) = 1 for any real number a.

Question: What is a simpler expression for ei3π/2, and where does it appear as a point on
the plane?

2 Vector Spaces

We will deal with vector spaces Cd. Cd is the set of column vectors of length d (dimension
d) whose elements are complex numbers. So for example 1

i
e2i

 ∈ C3. (4)

If x ∈ Cd, then the conjugate transpose of x, denoted by x†, is the d-dimensional row
vector where the jth element of x† is the complex conjugate of the jth element of x. For
example, if

x =

 1
i
e2i

 then x† =
(

1, −i, e−2i
)
. (5)

More generally, if you have a matrix A, then A† denotes the conjugate transpose of A,
where you take the transpose of the matrix, and then take the complex conjugate of each
element. For example

(
1, 2, 3
−1i, −2i, −3i

)†
=

 1, 1i
2, 2i
3, 3i


Given vectors x,y ∈ Cd, we can take the inner product y†x by doing matrix multiplication

between y† and x. That is: y†x =
∑d

i=1 y
∗
i xi, where xi is the ith element of x and yi is the
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ith element of y. For example, if x is as above, and y =

 i
1 + i

2

, then

y†x =
(
−i, 1− i, 2

) 1
i
e2i

 = −i× 1 + (1− i)× i + 2× e2i = −i + i + 1 + 2e2i

= 1 + e2i. (6)

Question: If x =

(
1
i

)
and y =

(
1
−i

)
, what is y†x? What is x†y?

Question: If x,y are any vectors in Cd, explain why
(
y†x
)∗

= x†y.

Question: Show that the inner product follows the distributive property. That is, if x,y, z ∈
Cd, explain why z† (x + y) = z†x + z†y.

A basis for a vector space Cd is a set of vectors {v1, . . .vd} such that for every vector
x ∈ Cd, there is a unique set of complex numbers {a1, . . . , ad} such that

x =
d∑
j=1

ajvj. (7)

If you have a set of d vectors {v1, . . .vd} each in Cd such that

v†jvk =

{
1 if j = k

0 if j 6= k,
(8)

then they form a basis for Cd. We call such a basis an orthonormal basis. Orthonormal com-
bines the words “orthogonal” which refers to two vectors whose inner product is orthogonal,
and “normal” which refers to a vector whose inner product with itself is 1.

For example you can verify that:

v1 =
1√
2

(
1
i

)
, v2 =

1√
2

(
1
−i

)
(9)

from an orthonormal basis for C2 because there are two of them, and they satisfy Eq. (8).
In quantum computing, we will exclusively deal with orthonormal bases.
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Given a vector x ∈ Cd, it is often helpful to write that vector in terms of a given
orthonormal basis {v1, . . .vd}. In other words, we would like to find the complex numbers
aj as in Eq. (7). When {v1, . . .vd} is an orthonormal basis, finding this decomposition is

fairly straightforward. We can apply v†i to both sides of equation Eq. (7):

v†ix = v†i

(
d∑
j=1

ajvj

)

=
d∑
j=1

ajv
†
ivj

= ai (10)

where the second line comes from the distributive property, and the final line comes from
Eq. (8).

Question: Consider the orthonormal basis {v1,v2} for C2 where v1 = 1√
2

(
1
1

)
and

v2 = 1√
2

(
1
−1

)
. Write x = 1√

2

(
1
i

)
in this basis. (In other words, write x = a1v1 + a2v2

for some complex numbers a1 and a2.)

Let Cn×m denote the set of matrices with n rows and m columns and complex elements.
Let A ∈ Cn×m and B ∈ Cp×q. Then the tensor product (technically the Kronecker product)
of A and B is denoted by A⊗B. If the element in the ith row and jth column of A is Aij,
then

A⊗B =


A11B, A12B, . . . A1mB
A21B, A22B, . . . A2mB

...
...

...
...

An1B, An2B, . . . AnmB

 .

For example,

(
1, 2, 3
−1, −2, −3

)
⊗

 0
1
i

 =


1

 0
1
i

 , 2

 0
1
i

 , 3

 0
1
i


−1

 0
1
i

 , −2

 0
1
i

 , −3

 0
1
i



 =


0 0 0
1 2 3
1i 2i 3i
0 0 0
−1 −2 −3
−1i −2i −3i

 .

Question: If A is an n ×m matrix and B is a p × q matrix, what are the dimensions of
A⊗B?
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The tensor product has the following properties:

x⊗ y = xy (11)

A⊗ (B + C) = A⊗B + A⊗C (12)

(B + C)⊗A = B⊗A + C⊗A (13)

(A⊗B)† = A† ⊗B† Note! the order stays the same! (14)

(A⊗B) · (C⊗D) = A ·C⊗B ·D, (15)

where · denotes regular matrix multiplication. (The first line means that if you just have
numbers rather than matrices, the tensor product is just the regular product.)

Question: Consider the orthonormal basis {v1,v2} for C2 where v1 = 1√
2

(
1
1

)
and

v2 = 1√
2

(
1
−1

)
. Show that {v1 ⊗ v1,v1 ⊗ v2,v2 ⊗ v1,v2 ⊗ v2} is an orthonormal basis

for C4.

Question: In this problem, we’ll show that the previous problem generalizes. Suppose we
have an orthonormal basis {v1, . . . ,vd} for Cd, and an orthonormal basis {u1, . . . ,uf} for
Cf . Show that the set of vectors consisting of all possible pairs of tensor products vi ⊗ uj
form an orthonormal basis, and say which space they form a basis for. (Use the tensor
product properties!)
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