Huffman Encoding Learning Goals · Describe "Binary code," "Prefix free, "Average letter length" · Explain connection between binary codes + trees · Describe Huffman's alg. · Analyze runtime of Huffman's alg · Describe impact of data structures alg runtime /

· Prove correctness of Huffman's alg ~~

Announcements Quiz 4 Cancelle 2,

Feedback: Assessment Feedback

Thats of Assignments, OH

Exit Tickets:

Average picture, manipulate sample space

Wikipedia formal languages - alphabet symbol

F sigma->{0,1}^*

Binary code use?

Binary Codes

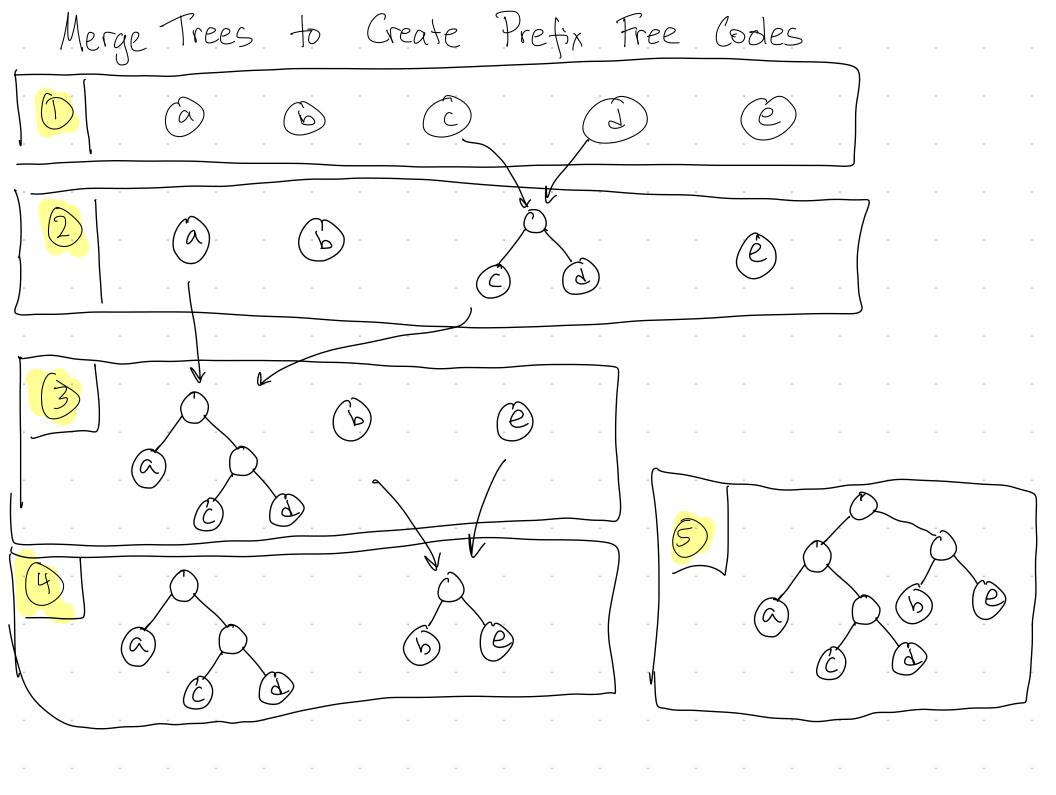
ex: 2 = 2a,b,c,d, ..., 72 3

def: Given an alphabet Ξ_1 a binary code is a function $f: \Xi \to \Xi_{0,13}^*$

ex: Braille [1010101], ASCII, Morse Code

Suppose you have a message where the letter "a" 0ccurs 50% of the time, "b" 30%, and "c" 20%. Which is the best binary encoding of $Z = \{a, b, c\}$? A): f(a) = 0 B) f(a) = 0 C) f(a) = 0 f(b) = 1 f(b) = 10 f(c) = 0

A).
$$f(a)=00$$
 B) $f(a)=0$ C) $f(a)=0$ $f(b)=10$ $f(c)=10$ $f(c)=01$ $f(c)=01$ $f(c)=11$


Doesn't take Ambaguous Not ambaguous, advantage of for decoding average bits per letter is rates $01 \Rightarrow c.7$ per letter is small # of bits in $f(c)$

Average letter length: $L(f) = \sum_{i \in Z} |f(i)| \cdot p(i)$

ex: C $|f(a)|p(a)+|f(b)|\cdot p(b)+|f(c)|\cdot p(c)$
 $|f(a)=0$ $f(a)=0$ $f(a)=0$ $f(a)=0$ $f(a)=0$ $f(a)=10$ $f(a)=10$

Binary Trees L. Binary Codes f(a) = 0 $f(\alpha) = 0$ f (b) = 0/ £(p)=10< f([]=\) f(c)=1) There is ambiguity for decoding if multiple letters lie on same path a wwa

def: A code is "prefix free" if all letters are at leaves in corresponding binary tree.

Optimal Binary Encoding Problem

Input: Z (alphabets of symbols)

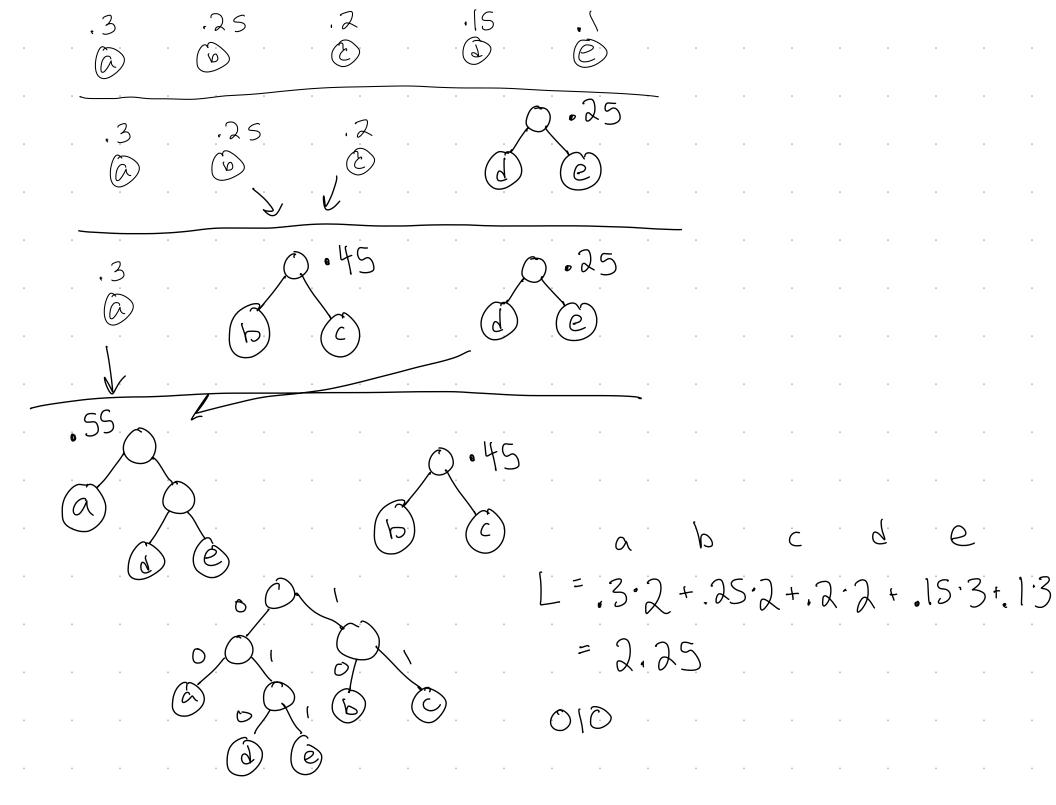
p: Z > IR (probabilities/frequency for each symbol)

Output: f: Z > 20,13* s.E.

- of is prefix free
- o minimize average letter length

Huffman's Algorithm

For each it 5:


- · Create a tree with one node, label
 - · Give tree weight p(i)

While there is more than one tree:

- · Merge two trees with smallest weight
- . Set weight of merged tree to be sum of weights.

<u>.</u> i	P(i)	· Use Huffman's algorithm to create a binary
<u>Q</u>	P(i) .3	6 Code
þ	.25	· What is the average letter length of your
C	. 2	code
d	1.15	· What is the runtime of Huffman's in terms of
<u> </u>		Z =n? Ideas to improve?

· Why greedy?

2 = N $\rightarrow \left(\left(\mathcal{N}_{1}^{2} \right) \right)$ O(n) For each i = 2: · Create a tree with one node, label · Give tree weight p(i) O(i) O(n) While there is more than one tree:

Merge two trees with smallest weights O(n)

Set weight of merged tree to be sum of weights
O(1)

Why greedy:

Huffman's Algorithm (nlogn)
For each i e S:
For each i e 2: Create a tree with one node, label i o(n) Give tree weight D(i)
While there is more than one tree: O(n)
Merge two trees with smallest weights O(logn) Set weight of merged tree to be sum of weights Peinsert merged tree into near O(logn)
· Set weight of merged tree to be sum of weights
· Reinsert merged tree into near O(logn)
Improve runtime?
At each iteration of while loop, find minimum value tree.
· Helpful data structure?? Min Heap
O(nlogn) · Initialize n items in heap
O(logn) Remove minimum wt item
A Clasia de la cost Mous idoin
O(logn). Insert new item

Go Program! (Lots of details to figure out!)
Ethical Matrix (see programming assignment)
tree merges
Thm: Huffman's Algorithm produces a prefix free code that minimizes average letter length.
That Minimizes average letter length.
Pf: We will prove correctness by induction on $N = Z $.
Base Case: If N=2, there are 2 characters: a, b.
Huffman does a a a b

This has optimal average letter length. (1)

Inductive Step: Assume for induction that Huffmans alg produces à prefix free code with optimal average letter length for any alphabet with k characters. Consider an input & st. | = k+1. Let a, b be the characters of Z with the smallest p-values. Define Z = Z - Za, b3 UZa/b3 where a/b is a new character with p(a/b)=p(a)+p(b).

ex:
$$Z = \{e, f, g, h\}$$
 $P(e) = .1$ $P(f) = .7$ $P(g) = .15$ $P(h) = .85$ then $Z =$

.1 .7 .15 .05

① ① ② ② ③

.15 .7 .15

② ① ① ② ③

.7 .9

② ② .7 .9

② ② .7 .9

② ② .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ③ .7 .7 .9

② ⑤ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② ⑥ .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

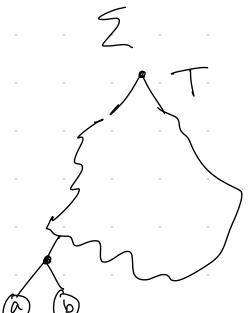
② .7 .7 .9

② .7 .7 .9

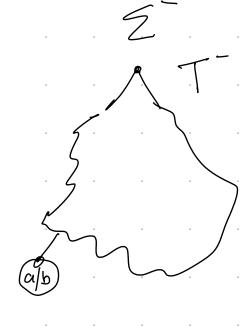
② .7 .7 .9

② .7 .7 .9

② .7 .7 .9

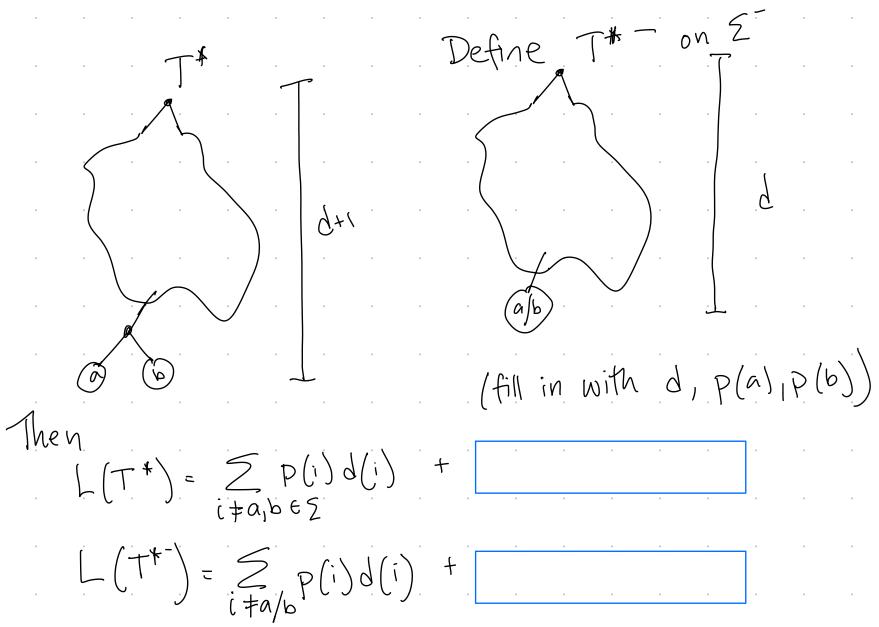

② .7 .7 .9

② .7 .7 .9


② .7 .7 .9

② .7 .

In general:


Huffman

By inductive assumption, T gives an optimal binary code (b/c has k characters, created using Huffman)

Lemma: There is an optimal tree for Z where a, b are siblings. (will prove later)

Suppose for contradiction that T is not optimal. Let T++T be an optimal tree with a, b siblings (by Lemma)

$$S_0$$

$$L(T^*)-L(T^*)=$$

Similarly

$$\frac{1}{2}\left(\frac{1}{2}\right) - \frac{1}{2}\left(\frac{1}{2}\right) = \frac{1}{2}\left(\frac{1}{2}\right)$$

Thus

$$L(T^*)-L(T^*)=L(T)-L(T^-)$$

Mis is a contradiction because

Lemma: There is an optimal tree for \leq with a, b (characters with smallest p-values) siblings.