Huffman Encoding Learning Goals

- · Describe "Binary code," "Prefix free, "Average letter length"
- · Explain connection between binary codes + trees
- · Describe Huffman's alg.
- · Analyze runtime of Huffman's alg
- · Describe impact of data structures alg runtime
- · Prove correctness of Huffman's alg

Binary Codes

ex: 2 = 2a,b,c,d, ..., 72 3

def: Given an alphabet Ξ_1 a binary code is a function $f: \Xi \to \Xi_{0,13}^*$

ex: Braille [0:10101], ASCII, Morse Code

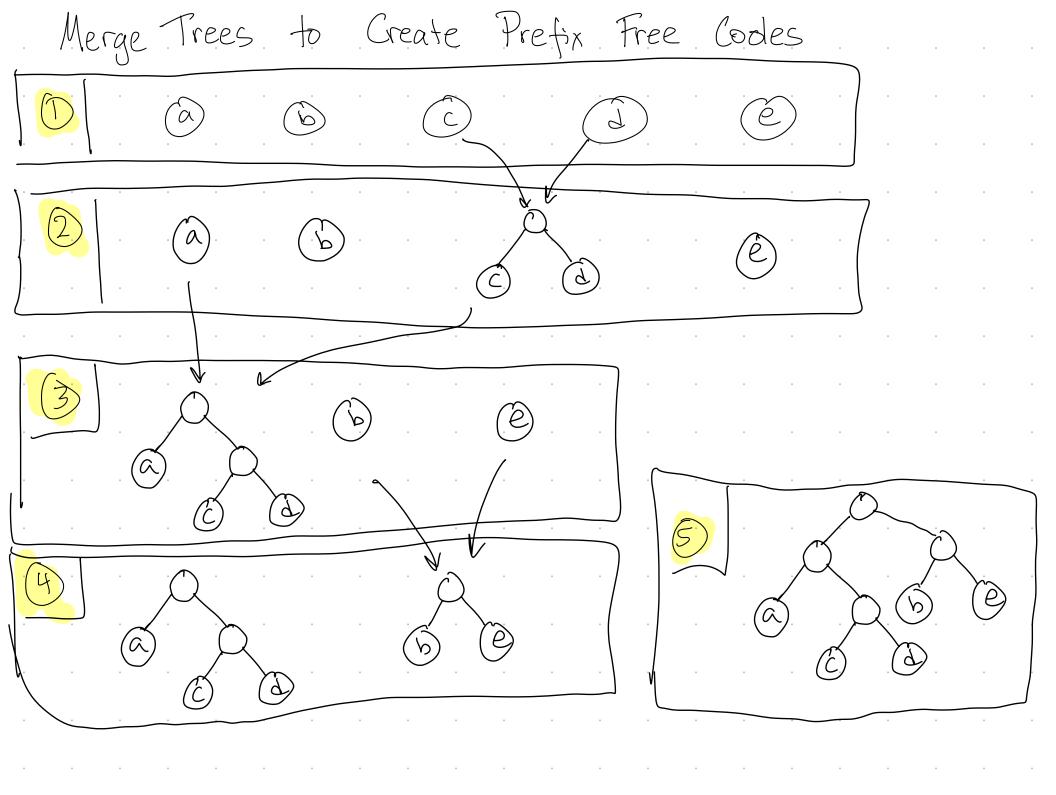
Suppose you have a message where the letter "a" 0ccurs 50% of the time, "b" 30%, and "c" 20%. Which is the best binary encoding of $Z = \{a,b,c\}$? A): f(a) = 0 B) f(a) = 0 C) f(a) = 0 f(b) = 1 f(b) = 10 f(c) = 0

A):
$$f(a)=00$$
 $f(b)=01$
 $f(b)=1$
 $f(c)=01$
 $f(c)=01$
 $f(c)=01$
 $f(c)=10$

Doesn't take Ambaguous Not ambaguous, advantage of for decoding average bits

Tates

OI > ab?


Exercise F(a) | $p(a)$ + | $f(b)$ | $p(b)$ + | $f(c)$ | $p(c)$

ex: C | $f(a)$ | $p(a)$ + | $f(b)$ | $p(b)$ + | $f(c)$ | $p(c)$

1.0.5 + 2.0.3 + 2.0.2 = 1.5

Binary Trees L. Binary Codes f(a) = 0 $f(\alpha) = 0$ f (b) = 0/ £(p)=10< f([]=\) f(c)=1) There is ambiguity for decoding if multiple letters lie on same path a wwa

def: A code is "prefix free" if all letters are at leaves in corresponding binary tree.

Optimal Binary Encoding Problem

Input: Z (alphabets of symbols)

p: Z > IR (probabilities/frequency for each symbol)

Output: f: Z > 20,13* s.E.

- of is prefix free
- o minimize average letter length

Huffman's Algorithm

For each it 5:

- · Create a tree with one node, label
 - · Give tree weight p(i)

While there is more than one tree:

- · Merge two trees with smallest weight
- . Set weight of merged tree to be sum of weights.

<u>.</u> i	P(i)	· Use Huffman's algorithm to create a binary
<u>Q</u>	P(i) .3	6 Code
þ	.25	· What is the average letter length of your
C	. 2	code
d	1.15	· What is the runtime of Huffman's in terms of
<u> </u>		Z =n? Ideas to improve?

· Why greedy?