Shortest Path Problem Input: $G = (V_1 E)$, $W : E \rightarrow \mathbb{R}^+$, $S, E \in V$, |V| = n, |E| = M, directed Output: Path P from 3 to t in G e.g. P= ((S,u), (u,v), ... (r,t)) « sequence of connected edges Such that L(P) = Z w(e) is minimized Shortest Path: ((s,t)) Example: G: 41.79.4 2 Negative Cycle 1.5 1-3 +2 Various Approaches -> edges have positive wt. · Greedy Dijkstra's · Brute Force > Bread th-First Search > edges all have weight 1 · Dynamic -> Bellman-Ford -> edges can have negative wt -> can work with global or distributed G → fails if Must avoid neg. cycles

Dijkstra's Algorithm Input: G = (V, E), $S \in V$, |V| = n, $W = \rightarrow \mathbb{R}^+$ Output: N-dimensional arrays L, P s.L. L[v]: length of shortest path from s to V in G P[V] = Shorstest path from s to v in G X~353 // X is set of visited vertices L[s]=0Base case $P[5] \leftarrow \phi$ While there is an edge from $X + \overline{X}$: C is set of red edges $C \leftarrow \{(u,v): U \in X, v \in X\}$ $(N^*, V^*) \in \operatorname{argmin} \{ \{ u, v \} \in C \}$ Dijkstra's criterion "(u*,v*) has minimal Dijkstrais $\Gamma[\Lambda_{+}] \sim \Gamma[\Lambda_{+}] + M(\Lambda_{+}^{*}\Lambda_{+})$ Criterion' $P[v^*] \sim P[u^*] + (u^*, v^*)$ (+ means append) X = X V q V t q

X = 353Example L(S]=02 $P[5] = \phi$ 5 While there is an edge from $X + \overline{X}$: $C \leftarrow \zeta(u,v) : U \in X, v \in X$ $X = \{s\}, X = \{u, v\}$ $(N^*, V^*) \in \operatorname{argmin} \{L[u] + W(u, v)\}$ · U (N,V)&C 2 $C = \mathcal{A}(S, \mathcal{U}), (S, \mathcal{V})$ $L[V^*] \leftarrow L[U^*] + W(u^*, v^*)$ $P[v^*] \leftarrow P[u^*] + (u^*, v^*)$ $A(S_1 + W(S, M))$ X = X V q V t z 5 (S, W) $\Lambda(SJ+W(S,V))$ U D + X = S S, UZ [S, () \ (S, u), (u, v) $C = {}^{3}(S_{1}v), (u,v)$ $X = \frac{1}{2} S_1 U_1 V \overline{3}$ U $\chi = 35, u\xi$ 2 A[S] + W(S,V)A(n + w(n, v)) $\overline{X} = \frac{1}{2}\sqrt{2}$ D. t. 4.=4. · +. = 3 2

Dijkstra's Algorithm Input: G = (V, E), $S \in V$, |V| = n, $W : E \rightarrow \mathbb{R}^+$ Output: N-dimensional arrays L, P s.t. L[v]: length of shortest path from s to v in G P[v] = shorstest path from s to v in G // X is set of visited vertices X ~ 353 L STED Base case Show Dijkstra's P[S]+ ¢ alg: fails with While there is an edge from $X + \overline{X}$: Negative weights $| (- \xi(u,v): u \in X, v \in \overline{X} \xi)$ $(N^*, V^*) \in \operatorname{argmin} \{L[u] + W(u, v)\}$ $[u, v) \in C$ 5-2-4 $\left[\left[V^{*} \right] - \left[\left[U^{*} \right] + W \left(V^{*} \right] \sqrt{*} \right) \right]$ $P[v^*] \stackrel{\sim}{\longrightarrow} P[u^*] + (u^*, v^*)$ Under what conditions X = X V Z V Z can Dijkstra's alg have Neg. weights but be successful?

Thm: Dijkstrais alg Correctly returns the shortest path Pf: We will prove using induction on N=|X| that Dijkstra's alg correctly assigns L[v] and $P[v] \forall v \in X$. When N=1, $X=\{s\}$ and L(s]=0, $P(s]=\phi$ are correct b/c you can get from 5 to itself with no edges in O length. Let K=1. Assume for induction that Dijkstra's alg. Correctly assigns L[v] and P[v] Y vex when |X|=K Suppose Dijkstra's alg. is about to add the (K+1)th element to X. Let $(u_1^*, v_1^*) = \arg \min \{ \{ L[u] + w(u, v) \}, so Dijkstra's chooses$ $(u, v) \in C \}$ V* to be (K+1) the element of X and sets P[v*]= P[u*]+(u*,v*) and $L[v^*] = L[u^*] + W(u^*, v^*)$. We need to prove these assign-Ments are correct.

Suppose for contradiction that P=P[u*]+(u*,v*) is not the shortest path from S to V*. Let P* = P be the optimal. L(a>b): length of P*'s path from a tob path. X S X O Y Y X $L(S \rightarrow X)$, $L(y \rightarrow V^{*})$ $W(x_1y)$ S X Y Vt (Xy): 1st edge in P* (stretched out) C to appear in Pt $L(S \rightarrow K) + W(X,Y) + L(Y \rightarrow V^{*})$ $S_{0} \perp (P^{*}) =$ 2.1 Thus $L(P^*) \ge L(P)$, contradicting the fact that P^* was optimal and P was not.

 $L(P^*) = L(S \rightarrow X) + W(X,Y) + L(Y \rightarrow Y^*)$ $\geq \left[\left(S \rightarrow X \right) + W \left(X, Y \right) \right]$ $(b/c L(y \rightarrow v^*) \geq 0)$ $\geq L[X] + W(X,Y)$ b/c Pt's path from sto x will be at least as long as shortes path from 5 to X. By induction assumption, L[x] is length of shortest path from Sdo since Dijkstra chose (11*,11*) to minimize Dijkstra's criterion $\geq L[u^*] + w(u^*,v^*)$

= L(P)

.

What is the runtime of Dijkstra's alg as written? What data structure should you use to improve? What is runtime with improved data structure?

Xezsz L (STED P[5]+¢ (faster!) While there is an edge from X to X: vertices in X $C \leftarrow Z(u,v) = U \in X, v \in X$ Store edges tor C in $(N^*, V^*) \in \operatorname{argmin}_{[u,v) \in C} \{ \sum_{i=1}^{n} | u_i v_i \} \in C$ Min Heap! (priority gueue) $L\left[V^{*}\right] \leftarrow L\left[V^{*}\right] + W\left(U^{*},V^{*}\right)$ $P\left[v^{*} \right] \leftarrow P\left[v^{*} \right] \leftarrow \left[v^{*} \right] + \left[v^{*} \right] + \left[v^{*} \right] \right]$ X = X V G V + 3

Objects in Priority Queue: vertices V & X attributes Vertex Object Name: (v Priority Queue ordered $+W(M_{1}v)$ Kry, Min Ne X L[N] Key value prior: larg min L[u] + W(u, V)N.E. Х In this situation, what should v prior be set to? 417=5 01 U))15 B 8 \mathcal{W} \mathcal{N} WO L[W]=7

Dijkstra's X ~ 353 Min Heap L [5]=0 O(nlogn) Mittalize N items in heap O(logn) Remove mint item P[5]+ \$ //Initialize Heap O(logn) · Insert new item For $U: (S, U) \in E$: If have already. n. key e w(s,u) found item N. priore S Insert 11 into heap H For other u e X not yet in heap: 1 U. Keye a U. prior $\leftarrow \phi$ Insert 11 into heap H

While $H \neq \phi$: V' « H. pop // 11 automatically has minimum Dijkstra's criterion $X \leftarrow X \cup \overline{Y}$ L[V*] = V* Key P P[v*] & P[v*, prior] + (v*prior, v*) Vertex Objec attributes adjList [Name: V // Update Heap K_{4} , Min L[u] + W(N,v) $N \in X$ For r: (vt,r) EE Remove r from H Drive: argmin [[u]+w(u,V) |fr.key>[[v]+w(v*,r): NEX $r.key \in L[v*] + w(v*,r)$ r, prior < v* Keinsert r into H N Why is runtime O((n+m) logn)) adj. list? with

Dijkstra's X ~ 353 Min Heap O(1)L [57=0 O(nlogn) Mittalize N items in heap O(logn) · Remove min ditem $P[5] \neq \phi$ //Initialize Heap O(logn) · Insert new item For MEV-253: $If'(s,u) \in E$: if have already. $u. key \in W(s, u)$ found item · U. prior E.S Else: $O(n \log(n))$ N. Key & 2 U. prior $\leftarrow \phi$ Insert 11 into heap H

While H=p: O(n) (O(nlogn) | U=H pop O(logn) (O(nlogn) 14100 -> 6 > [u, w, r, t \mathcal{O} L[U] = U. Key P[u] & P[u. prior] + (u. prior, u // Update Heap D(mlogn) For V: (U,V) E E ~ O(# edges of A Each vertex is popped once. When popped, go thru Remove v from H Ollogn) $\begin{aligned} &| f v. key > L[u] + w(u,v) : \\ &| v. key < L[u] + w(u,v) \\ &| v. prior < U \end{aligned}$ its adj list. Never check that list again... Keinsert v into H $D(\log n)$ N Why is runtime O((n+m) logn)) with adj. list? Q -

Compare to Bellman Ford: O((n+m)n)

7 = sum of items in list

. U 1 V V S £

5 U 5 U

HUX SV X SUT X ST \mathcal{M}

For UEV: Print to

For $V \in (U, v) \in E$:

Print V &

t t

Ú