<u>Greedy Algorithm</u> (informal def): an alg that sequentially contstructs a solution through a series of myopic (short-sighted = local = not global = not thinking about future) decisions

- Typical properties
 - · Easy to create
 - · Runtime easy to analyze

 - · Frequently not optimal · When optimal, hard to prove correct.

Scheduling ex: N=3 r time needed for tast 1 t = 13 | 4 | 2 | - 1 is most important Input: N tasks, W = 5112 $W_1 W_2 W_3$ · Lime for each task, · weight/importance for each task Idea: Can only do one task at a time, must complete a task before moving on Output: Ordering of tasks $\sigma = (\sigma_1, \sigma_2, \sigma_3, \ldots)$ e.g. $\sigma = (3, 1, 2)$ that minimizes $A(\sigma) = \sum_{i=1}^{n} W_i C_i(\sigma)$ « "Objective Function is a function where your goal (object) is to maximize or minimize its value. Used Application: CPU scheduling in optimization problems, where goal is to optimize something.

What is the runtime of a brute force algorithm? $(\mathcal{C}) = \mathcal{O}(\mathcal{M}, \mathcal{M}) = \mathcal{D} = \mathcal{O}(\mathcal{M}, \mathcal{M})$ $A) \quad O(n) \quad B) \quad O(N^2)$ INPUT: N tasks, · Lime for each task, · weight/importance for each task Untput: Ordering of tasks $\sigma = (\sigma_1, \sigma_2, \sigma_3, \dots)$ that minimizes $A(\sigma) = \sum_{i=1}^{n} w_i C_i(\sigma)$ Brute Force: opto= $A(\sigma)$: Min A < DO Sume O For JE permutations of ZIZ, 3,..., n 3 time = O For it J A ← A(J) ← time < tme + t[i] Sum < sum + w[i] time O(N)If A < minA, O(n)1 min A < A Return Sum opt J < J Return opto

Objective Function + Completion Time Is large when $A(\sigma) = Z W_i C_i(\sigma)$ important jobs i=1Completion Time: C:(J) time when job i is completed with ordering T $\begin{array}{cccc} t_1 & t_2 & t_3 \\ e_X; & 3 & 4 & 2 \end{array}$ T(3,1,2)start $C_{1}(3,1,2)=5$ $\binom{1}{2} (\frac{3}{3}, \frac{1}{2}, \frac{2}{2}) = 9$ $(3_1, 1_1, 2) = 2$

.

.

Counter example: 5 deg. 1 deg. t = 53W = 1211 $5(are = [-3] - 2] (w_i - t_i)$ Other Ordering (1,2) Jobs 5 jobs 8 Hitter Htt Greedy Ordering (2,1) job2 3 job180 $A = W_1 C_1 + W_2 C_2$ $A = W_1 C_1 + W_2 C_2$ = 2.5 + 1 - 8 = 18 = 2.8 + 11 - 3 = 19

One approach to designing greedy alg: Wi-tì W_i/t_i $W_i^2 - 2t_i$ - create several reasonable scoring functions - test, try to create counterexamples - if no counter example, try to prove correct This Ordering jobs by decreasing value of wilt; is optimal for minimizing A(0)= ZwiCilo) if wilt; are all distinct. Pf: [Exchange Argument = Type of Pf by Contradiction]

WLOGI, relabel so $\frac{w_1}{t_1} > \frac{w_2}{t_2} > \frac{w_3}{t_3}$ so greedy ordering is T = (1, 2, 3, ..., n). Assume for contradiction that T is not optimal. Then $\exists T^*$ that is optimal.

Since
$$J^{*} \neq J$$
, there must be tasks by in J^{*} that are next to
each other but out of order relative to J^{*} :
 $J^{*} = (..., y, b...)$ but b(y)
ex: $J^{*} = (3, 1, 2)$
What is b, y in this example?
A) b=1 B) b=3 () b=2 D) There is not
a unique
 $y=3$ $y=1$ $y=3$ b, y in this
example

Let
$$\mathcal{T}^{+1}$$
 be the same sequence as \mathcal{T}^{+} , but with by
exchanged to be in the correct order
 $\mathcal{T}^{+} = (\dots, y_{1}, b, \dots)$ $\mathcal{T}^{+} = (3, 1, 2)$
 $\mathcal{T}^{+} = (1, 3, 2)$
 $\mathcal{T}^{+1} = (1, 3, 2)$
What is $A(\mathcal{T}^{+}) - A(\mathcal{T}^{+1})$? $(A(\mathcal{T}) = \sum_{i=1}^{2} w_{i}(\mathcal{L}_{i}(\mathcal{T}))$
time $\mathcal{T}^{+} = (1, 3, 2)$
 $\mathcal{T}^{+} = (1, 3, 2$

= Wbty- Wytb

.

Let
$$\mathcal{T}^{+1}$$
 be the same sequence as \mathcal{T}^{+} , but with by
exchanged to be in the correct order
 $\mathcal{T}^{+} = (\dots, y_{j}, b, \dots)$ $\mathcal{T}^{+} = (3, 1, 2)$
 $\mathcal{T}^{+1} = (\bigcup_{k \to 0}^{+} b_{k}, y_{k}, \bigcup_{k \to 0}^{+} b_{k}, y_{k}, \bigcup_{k \to 0}^{+} \mathcal{T}^{+} = (1, 3, 2)$
What is $A(\mathcal{T}^{+}) - A(\mathcal{T}^{+})$? $(A(\mathcal{T}) = \sum_{i=1}^{2} w_{i}(\mathcal{L}_{i}(\mathcal{T}))$
time $\mathcal{T}^{+} = (1, 3, 2)$
 $\mathcal{T}^{+} =$

= Wbty- Wytb

.

Structure of Exchange Proof tssumption 1. Assume greedy strategy T is not optimal 2. There must exist an optimal strategy styr 3. Modify J* by exchanging/swapping 2 elements => J*1 4. Show J*' is better than J* => contradiction What is the runtime of our greedy scheduling algorithm? C) $O(n \log n)$ $D O(n^2)$ \mathcal{B}) O(n)A) O(1)Schedule (n): · For i < 1 to vi: calculate wilti Where did we use Score Wilt. · Sort by score are all distinct?

Recall
$$A(\sigma^*) - A(\sigma^{*'}) = W_{b} + W_{y} + b$$
. Divide both sides by types:

$$\frac{A(\sigma^*) - A(\sigma^{*'})}{t_{y} + b} = \frac{W_{b}}{t_{y}} - \frac{W_{y}}{t_{y}}$$
But $b < y$, so $\frac{W_{b}}{t_{b}} > \frac{W_{t}}{t_{y}}$, so

$$\frac{A(\sigma^*) - A(\sigma^{*'})}{t_{y} + b} > 0$$
, and $t_{y} + b > 0$, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, so

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^*) - A(\sigma^{*'}) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^{*'}) - A(\sigma^{*'}) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^{*'}) - A(\sigma^{*'}) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^{*'}) - A(\sigma^{*'}) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^{*'}) - A(\sigma^{*'}) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^{*'}) - A(\sigma^{*'}) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^{*'}) - A(\sigma^{*'}) - A(\sigma^{*'}) > 0}{t_{y} + b} = 0$$
, we said

$$\frac{A(\sigma^{*'}) - A(\sigma^{*'}) - A(\sigma^{$$

The Ordering jobs by decreasing value of Wilti is optimal
for Minimizing
$$A(\sigma) = \xi WiCi(\sigma)$$
 if $Wilti are all distinct.$
PF sketch: Choose some relabelling of tasks so that
 $Wilt_1 \ge W_2/t_2 \ge W_3/t_3 \cdots \ge W_0/t_n$
We call $T = (I_1Z, 3, ..., N)$ this greedy ordering. Let T^* be any other
ordering. We will show $A(T^*) \ge A(\sigma)$. Since for every permution
 T^* , $A(\sigma^*) \ge A(\sigma)$, T must be optimal.
 T^* , $A(\sigma^*) \ge A(\sigma^*) \ge A(\sigma^*'') \ge ... \ge A(\sigma)$

What is the runtime of our greedy scheduling algorithm? $O\left(M^{2}\right)$ C) O(nlogn) $(A) \circ O(r)$ B) O(n) \mathbb{D} Algorithm has not changed! We don't do bubble sort; we just imagine doing bubblesort in the proof!