(CS302 - Problem Set 8

1. Suppose you are searching an array A of length n for an element with value ¢. You
may assume A has no repeated elements and that t is in A. The strategy sampling
without replacement works as follows: Let T = {1,2,...,n}. Choose (“sample”) an
element g € T at random, and check if A[g] = t. If it is, return g. If it is not, remove g
from T (i.e. set T to equal T — {g}). Repeat this process, removing the guessed index
from T' each time you guess incorrectly, so the set of indices that you are guessing from
gets smaller and smaller over time, until you sample an index g such that A[g] = t.
(Replacement refers to whether the guessed index is placed back (“replaced”) into the
guessing set T' or removed after it is guessed.)

(a)

(b)

What is the sample space S for sampling without replacement for an array of size
3, if the item you are looking for is at position 17 (Please list all elements of the
sample space, do not describe in words.)

Let R:S — R be the random variable such that, for an element o of the sample
space, R(o) is the number of rounds (guesses) that occur in the algorithm when
the sequence of random outcomes is o. What is the value of R for each element
of S that you listed in the previous part?

In the case of the length 3 array, consider the indicator random variables X; :
S — {0,1} where

(1)

Xi(0) 1 if o has at least 7 rounds
i\0) =
0 if o has less than ¢ rounds.

R(o) = Z Xi(o). (2)

Choose an element o € S from part (a), calculate X;(o) for each ¢, and show that
indeed, R(0) = 320, X,(0) for that particular element o.

Now consider search without replacement with a length-n array. Please describe
the sample space as concisely but as descriptively as possible using English. (Your
description should be more precise than, e.g. “The set of possible sequences of
random outcomes that occur over the course of the algorithm.”)

(e) Now consider a length-n array, and, as in the length-3 example, let R : S — R be
the number of rounds that occur for a given element of the sample space, and let

Xi(o) = (3)

1 if o has at least ¢ rounds
0 if o has less than 7 rounds.

Using linearity of expectation and the special properties of indicator random vari-
ables that we’ve seen in our analysis of QuickSort, determine E[R] when we have
a length-n array. (Help on determining the probability of the events associated
with indicator random variables is on the hints.)

(f) Please comment on the average-case vs best-case vs worst-case runtime of search
without replacement.

2. You run a plant that produces sheets of aluminum alloy, and then you cut them to size
for customers. Your machine produces rectangular sheets of dimension) x R, and you
can cut any sheet into two smaller sheets by making a vertical or horizontal cut at an
integer location. So for example, if you have a 2 x 4 sized piece, you have the following
options that you could produce from a single cut:

e Two 1 x 4 pieces (from a horizontal cut at position 1).
e Two 2 x 2 pieces (from a vertical cut at position 2).

e A1x2anda 2 x 3 piece (form a vertical cut at position 1).

Say you decide to make the cut that produces a 1 x 2 and a 2 x 3 piece. You could
then subsequently cut the 1 x 2 piece into two 1 x 1 pieces, and the 2 x 3 piece into
a 2 x 1 piece and a 2 x 2 piece, and so on. Or you could stop cutting and sell a piece
that you've created.

You can also rotate pieces (so a 2 x 3 piece is the same as a 3 X 2 piece).

Suppose you produce n different sized products, where product ¢ has dimensions
x; X y;, and you can sell product i for v; dollars. (For example, perhaps product 1 is
a 2 x 2 piece that you can sell for $2, and product 2 is a 3 x 5 piece that you can
sell for $3 dollars.) You can sell multiple copies of the ith product if you can produce
multiple pieces of that size from your original sheet. Assume @, R, z;, vy;, and v; for
i € {1,2,...,n} are positive integers. You will design an algorithm that figures out
your maximum profit among any possible sequence of horizontal /vertical cuts.

(a) Please provide pseudocode for a dynamic programming algorithm that outputs
your maximum profit. (Note: your code doesn’t have to output how you should
actually divide the piece, just the profit.) The input to your algorithm should be
(Q, R, z,y,v) where @ and R are the size of the piece, array = contains the values
x;, array y contains the values y;, and array v contains the values v;.

(b) Explain why your algorithm is correct. (You don’t need to write a full proof, but
you should describe the logic behind the recurrences that you developed to create
your algorithm and explain how your algorithm checks the appropriate cases.)

(c) What is the runtime of your algorithm in terms of @), R, and n?

(d) Explain briefly how you would modify your algorithm to tell you whether you
should divide the current sheet, and if so, where you should make the cut.

3. Here are some problem definitions:

e DOUBLE-3-SAT: Given a 3-SAT-type formula involving the variables x1, xo, . .., =,
and their negations, are there at least two different satisfying assignments? For
example, (x; V =@y V —2) A (x2 V x3) A (—a3) has two unique valid assignments,
rr=1Lxo=1zxr3=0and z; =0,20 = 1,23 = 0.

e k-INDSET: Given an undirected, unweighted graph G = (V, E), is there a set
V' C V such that |V’| > k, and for all v,u € V', there is no edge {u,v} € E?

e k-CLIQUE: Given an undirected, unweighted graph G = (V| F), is there a set
V' C V such that |V’| > k, and for all v,u € V', there is an edge {u,v} € E?

(a) Prove DOUBLE-3-SAT is in NP.
(b) Prove k-INDSET is in NP.
(c¢) Prove k-CLIQUE is in NP.

