
CS302 - Problem Set 2

1. Read/Watch the following on robotics:

• Impact of Growing Robotics in China (Youtube 6 min)

• Infographic on Manufacturing Employment/Robot Use

• Study on Modern Workforce

As we did in class for an algorithm to improve air traffic control, consider a hypothetical closest
points algorithm that would improve robot performance in manufacturing, and answer the
following questions:

(a) Brainstorm all stake-holders.

(b) Who might benefit from this algorithm (applied to this domain)?

(c) Who might be harmed by this algorithm (applied to this domain)?

(d) Would this application likely reinforce or counteract existing inequalities?

(e) Would you feel comfortable (from an ethical perspective) implementing this algorithm
in this context?

2. Please write a formal proof for the correctness of the closest points algorithm using strong
induction. You should combine all of the pieces we discussed in class into a proof that is
easy to read and understand. You may use figures (pictures) in your proof, but you should
clearly explain what is happening in the figure using English. The goal of this problem is
to clearly and concisely explain complex mathematical/algorithmic ideas in English. I would
recommend typing your proof so that it is easy to make edits. You should not turn in the
first version you write - make sure you reread and make changes for clarity and correctness.
For reference, my proof is about a page typed. In your proof, please reference to the following
algorithm:

ClosestPair(P ) (where P is an array containing x-coordinates and y-coordinates of n points,
where no two points have the same x- or y-coordinate.)

Step 1: If |P | ≤ 3 use brute force search and return closest distance.

Step 2: Sort by x-coordinate into sets L and R

Step 3: δ = min{ClosestPair(L), ClosestPair(R)}
Step 4: Create Yδ, an array of points within δ of midline between L andR, sorted by y-coordinate.

Step 5: Loop through elements of Yδ, and calculate distance from each point to next [number
TBD in class] points, keeping track of δ′, the smallest distance found.

Step 6: Return min{δ, δ′}

3. In 3 dimensions, the distance between two points pi = (xi, yi, zi) and pj = (xj , yj , zj) is
D(pi, pj) =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. In this problem, we’ll think about how to

adapt our 2D Closest Points algorithm to 3D points.
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https://www.youtube.com/watch?v=ENy2VZi21YU
https://middlebury.instructure.com/courses/10025/files/folder/Ethical%20Readings?preview=1677454
https://middlebury.instructure.com/courses/10025/files/folder/Ethical%20Readings?preview=1677455


(a) I can describe the general idea of our 2D Closest Points algorithm as follows: “For a
small number of points, do a brute force search. Otherwise, divide the points into a
left and right half, and recursively solve to find the closest distance in each half. Now
we just need to check points that cross from one half to the other across the mid-line.
However, we only need to worry about a region close the this midline, and so we end up
being concerned with a line-like strip. So we use an approach similar to our algorithm
for Closest Points in 1D (a line) to deal with this strip.” Please give a similar description
for a divide and conquer algorithm for Closest Points in 3D. Please make an attempt at
this part before moving on to the next step.

(b) On the final page of the problem set is pseudocode to solve the 3D Closest Points
problem. What number should replace the “??” in Algorithm 2, line 5? (It should be
a specific constant, like “10.”) Please explain your reasoning. For this problem, choose
the number that you can most easily explain. Do not worry about finding the smallest
number possible.

(c) Challenge: What is the smallest possible number you could choose in part (b)? Please
justify.
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Algorithm 1: DivideFrontBack(P )
Input : Set of 3D points P .
Output: The distance of the closest pair of points

1 If |P | ≤ 3, brute force search;
2 Split points into front (F ) and back (B) halves by z-coordinate around the midline zmid;
3 δ∗ = min{DivideFrontBack(F ),DivideFrontBack(B)};
4 Create Pδ∗ , an array of points whose z-coordinates are within δ∗ of zmid.;
5 Return DivideLeftRight(Pδ∗ , δ

∗, zmid);

Algorithm 2: DivideLeftRight(P, δ∗, zmid)
Input : Set 3D points P , values δ∗ and zmid, such that all points in P have z-coordinate

within δ∗ of zmid
Output: The distance of the closest pair of points in P , or δ∗, whichever is smaller

1 If |P | ≤ 3, brute force search;
2 Split points into left (L) and right (R) halves by x-coordinate around the midline xmid;
3 δ = min{δ∗, DivideLeftRight(L, δ∗, zmid),DivideLeftRight(R, δ∗, zmid)};
4 Let Yδ be the set of points sorted by y-coordinate whose x coordinate is within δ of xmid and

whose z coordinate is within δ of zmid;
5 Loop through the elements of Yδ, checking the distance between each point and the next ??

points, and let δ′ be the smallest distance found;
6 Return min{δ, δ′};
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