Quiz Revisions Tutoring 5-7 Mondays WICS++: Wednesday, 3/9 in Monroe 311 from 9 pm - 10 pm

Seems like could apply proof to any ordering How to find best f? Work backwards/Use computers

Goals:

- 1. Improve our understanding of exchange proof
- 2. Analyze runtime
- 3. Dealing with ties
- 4. Describe Max Weight Independent Set Problem

$$(1,2), (A) \quad Let \quad (1,2), (A) \quad Let \quad (1,2), (A) \quad (1,2), (A) \quad (A) \quad$$

Idea: Boss says "We must optimize $A(\sigma) = ZwiCi(\sigma)$ " This Greedy alg with $f = w_{i}^{2} t$ is optimal for obj. fun. $A(\sigma) = \sum_{i=1}^{n} w_{i} C_{i}(\sigma)$. weight | f (2) [(3) time Pf: Exchange argument (contradiction) 2 next 2/5 5 smallest Assume wilt: are distinct & i e {1, 2, ..., n} 3 1/3 WLOG, relable so $W_{1t}^{2} > W_{2t}^{2} > W_{3t}^{2} > \cdots = W_{tu}^{2}$ 4/9 4 largest 9 $\left(l \right)$ So let T = (1, 2, 3, ..., n). This is the greedy ordering. For contradiction, assume T is not optimal. Let J* be the optimal ordering. J 7 J* Then Z jobs jik that are not in wymeric order in 5*

jzk $\mathcal{T}^{*} = \left(\dots, k, j \dots \right)$ Let othe be the same as ot but with j, k exchanged: some some some $\mathcal{T}^{*'} = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} \ddots & \ddots & \ddots & \ddots \end{pmatrix}$ $A(\sigma) = \sum_{i=1}^{n} W_i C_i(\sigma)$ $A(\sigma^*) - A(\sigma^{*})$ What is Q: T tx time J* ۰. Ut' time κ . ' $\left(\sum_{i} W_{i}C_{i} + W_{k}(T + t_{k}) + W_{j}(T + t_{k} + t_{j}) + \sum_{i} W_{e}C_{k} \right)$ $A(\sigma^*) = ($ $A(Q_{\star,}) =$ Zwili * wi (T+ti) + WK (T+tk+ti) + Zwele Witk-Wkt; (C*, mult. t;>0 $W_i^2 t_k > W_k^2 t_j$ Wjtx-> WXI W \Rightarrow But ltx 7 ₩ a contradiction $A(\sigma^*)$ \rightarrow Thus because this means Ot is not optimal. So J is optimal.

4s. MWIS (Dynamic Programming) Friday, March 12, 2021 11:44 AM

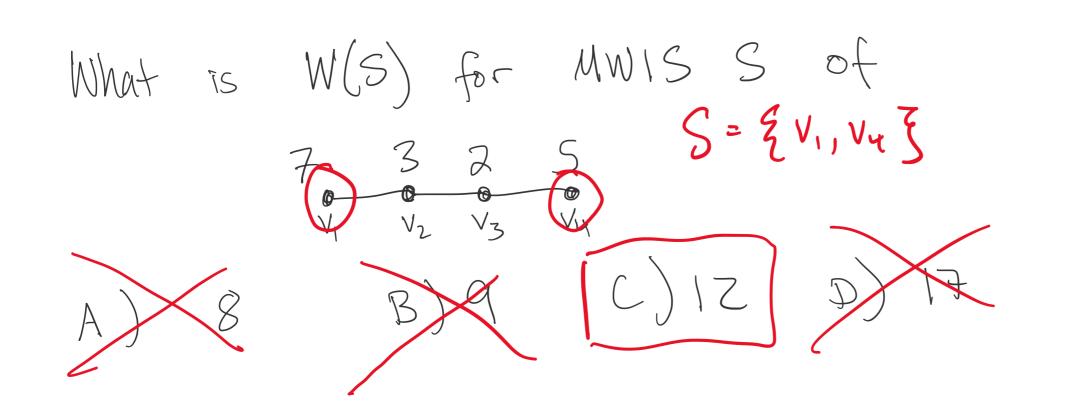
Max Weight Independent Set Problem (MWIS) INDUT: Graph: G=(V,E) esques Weights: W:V->Zt 7

Quiput:
$$S \leq V$$
 s.t.
Independent \rightarrow IF $\xi u, v \xi \in E$, $U \notin S$ or $v \notin S$
Set
 Max
 Max
 Max
 Max
 Max
 Max
 $Mergint$
 M

Applications · Cell Tower Transmission · Choose Franchise Location

X

\$



Ind Set Weight
$$p$$
 O
 $2\sqrt{3}$ 7
 $2\sqrt{3}$ 9
 $2\sqrt{3}$ 9
 $2\sqrt{3}$ 3
 $2\sqrt{3}$ 3
 $2\sqrt{3}$ 3
 $3\sqrt{3}$ 3
 $3\sqrt{3}$ 3
 $3\sqrt{3}$ $3\sqrt{3}$ $3\sqrt{3}$
 $3\sqrt{3}$ $3\sqrt{3}$
 $3\sqrt{3}$ $3\sqrt{3}$
 $3\sqrt{3}$ $3\sqrt{3}$
 $3\sqrt{3}$ $3\sqrt{3}$
 $3\sqrt{3}$ $3\sqrt{3}$
 $3\sqrt{3}$ $3\sqrt{3}$
 $3\sqrt{3}$ $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3}$
 $3\sqrt{3$