

Prove our f function is optimal

2. Describe general approach for greedy algorithm proofs

Thm: Greedy alg with $f = \frac{w}{t}$ is optimal for obj. fun. $A(\sigma) = \sum_{i=1}^{n} w_i C_i(\sigma)$.
(contradiction)
Assume Wilti are distinct & i = \frac{1}{2}, \ldots, n\frac{1}{2} \rightarrow 3
WLOG, relable so $W_1/t_1 > W_2/t_2 > W_3/t_3 > W_4$
So let $T = (1,2,3,,n)$. This is
the greedy ordering. For contradiction, Occurred to the motophinal. Let or be the
the greedy of service. To the assume of 15 not optimal. Let J* be the optimal ordering. J 7 J*
Then 3 jobs j.k that are not in wheric order in the
(T*= / k. \)
Let ot be the same as ot but with j, k exchanged: same same
exchanged: some
T*'=()
$A(\sigma) = \sum_{i=1}^{N} W_i C_i(\sigma)$
Q: What is $A(\sigma^*) - A(\sigma^{*})$
time Ttr
t, time, T
$A(\sigma^*) = \left(\sum_{i} w_i C_i + w_k (T + t_k) + w_j (T + t_k + t_j) + \sum_{i} w_i C_k \right)$
A(T') = ZwiCi + w; (T+tj) + Wk(T+tktj) + ZweCe
$A(\sigma^*) - A(\sigma^{*'}) = w_i t_k - w_k t_i$
But Wit; > Wx/tx => [Witx > Wx ti
Thus $A(T^*) - A(T^*) > 0$, a contradiction
because this means of is not optimal.
So Jis optimal.