Goals:

- Recall how to calculate averages
- Start thinking about how to analyze QuickSort average runtime
- QuickSort vs Mergesort

Office Hours: Friday until 1:30. After Break: Wed: 3-4

Calculating Average Runtime
Describe sample space S.
Set of all possible sequence of random outcomes that might occur over the course of the alg.
2. Create random variable:
$$R: S \rightarrow R$$

3. Evaluate $[E[R] = ZP(\sigma)R(\sigma)] R(\sigma) = runtime give is vandom outcomes
Too hard • Write $R(\sigma) = ZX_i(\sigma)$ • Use linearity of expectation
 $E[R] = Z E[X_i]$
• Use linearity of expectation
 $E[R] = Z E[X_i]$$

Calculating Average Runtime 1. Describe sample space S. Set of all possible sequences of random outcomes that might occur over course of alg. (including in p all recursive calls) pivot choices

When the example space if Rhothert is run on
the array:

$$[\underline{8}[5]7] = \underbrace{[8]5[7]}_{S=57} \underbrace{[8]5,7]}_{S=57} \underbrace{[6]57]}_{S=57} \underbrace{[6]57]}_{S=57} \underbrace{[6]57]}_{S=57} \underbrace{[6]57]}_{S=57} \underbrace{[6]57]}_{S=57} \underbrace{[6]57]}_{S=57} \underbrace{[6]57]}_{S=57} \underbrace{[7]57]}_{S=57} \underbrace{[7]57}_{S=57} \underbrace{[7]57]}_{S=57} \underbrace{[7]57}_{S=57} \underbrace{[7]57}_{S=57$$

• Write
$$R = \frac{1}{2} \times \frac{1}{2} - \frac{1}{2} = \frac{1}{2} E[\frac{1}{2}]$$

• Use Interrity of expectation:
 $E[R] = \frac{1}{2} E[\frac{1}{2}]$
• Enduate $E[X_i]$

Take a moment to reflect on group interaction from last time. Change in process?

- Suppose z_i, z_j (i < j) are both in an array that is the input to some recursive call of QuickSort. In each of the following cases, when are z_i, z_j compared or not compared in the *«* current recursive call? When are they kept together in the *«* same subarray for the next recursive call or separated?
 - z_i or z_j is chosen as pivot.
 - z_k is chosen as pivot, $k > i, j \ll$
 - z_k is chosen as pivot, $k < i, j \leftarrow$
 - z_k is chosen as pivot, $i < k < j \ll$
- What values can X_{ij} take? (Hint: only two possible values.) What conditions cause each value?
- What is probability of z_i, z_j being compared?

