(CS302 - Problem Set 7

1. Finish the proof of Lemma 1 from the proof of Huffman’s algorithm from class:

Lemma: Given an alphabet ¥ and probabilities p(i) for each i € X, let a and b
be the letters with the smallest probabilities. Then there is an optimal tree (a tree
corresponding to a code with smallest average letter length) where a and b are siblings.

Proof: Suppose for contradiction that there are no optimal trees where a and b are
siblings. Let 7" be an optimal tree where a, b are not siblings. Let z,y € ¥ be letters
that are sibling leaves in 7" that also have maximum depth. (Note that at least one
of x or y must not equal a or b, because otherwise a and b would be siblings. Also
there must be a pair of siblings at maximum depth because if there is only one leaf
at maximum depth, then you can relocate that symbol to be at its parent node while
maintaining a prefix free tree, which would then result in a tree with smaller average
length than 7", contradicting the fact that 7" is optimal.)

Let d be the depth of x and y in 7”7, and let d(7) be the depth of any other letter i
in T".
Consider the tree T, that we get by exchanging the positions of a and = and

exchanging the positions of b and y, while leaving all other letters in the same positions.
Then ...

2. Suppose you run a company with two offices, one in Washington, D.C. and the other
in San Francisco, California. You always spend the whole week in one location, but
each weekend, you decide whether to fly to the other office. In week ¢, you can make
W, dollars if you are in Washington, and C; dollars if you are in California. Each flight
from one office to the other costs $1000. Suppose you are initially in D.C., and you are
given the lists of potential profits for each location: Wy, W, ..., W, and C1,Cs, ..., C,.
Additionally, you are given L; € {C, W}, your final location, which is the location that
you must be in after the nth week. This means if you spent the nth week in California,
and Ly = W you must spend a final $1000 to fly back at the end of the nth week. In
this problem, you will come up with an algorithm to maximize your profit.

(a) Comment on societal/ethical impacts of this algorithm (think environmental, per-
sonal, etc.)

(b) A greedy algorithm would look at how much money you would make in each
week, and work in the place that will earn the most that week (after travel costs).



Give a counter example to show why this greedy algorithm is not always optimal.
(Your example should have n < 3, otherwise a later part of this problem will be
more challenging.)

(c) Create a dynamic programming algorithm (follow our usual steps, as described
below, or for more challenge try to do as much on your own without my guid-
ance/hints.)

i. Identify the likely subproblems and recurrence objects. (Pre-Hint Hint: you
need two sequences of subproblems, depending on whether you have to end
up in DC or California)

ii. Determine the relevant final options for the recurrence object and write a
recurrence relation for your recurrence object for each option. Also determine
base case(s). Briefly explain. (Partial solution in hints if stuck.)

iii. Turn your recurrence relation for your recurrence object into a recurrence
relation for the objective function value.

iv. Fill in pseudocode for an algorithm to determine the optimal schedule:

Algorithm 1: CommuteSchedule(M, Ly)

Input : Array M of size n x 2, where M[i, 0] is the money to be earned in W in
week i, M[i, 1] is the money to be earned in C' in week ¢, and Ly € {0,1}
telling you where to be at the end of week n, where 0 corresponds to W and
1 corresponds to C.

Output: Array D such that D[i] = 0 if you should work week i in W and D[i] = 1 if
you should work week ¢ in C'.

(d) What is the runtime of your algorithm?

(e) Apply your algorithm to your example from part (b) and show that it outputs
the correct schedule.

3. Suppose I would like to give you more flexibility on your exams, so I give you some
large number (let’s call it M) of problems, where the ith problem is worth p; points.
The time I give you to take the exam is not sufficient to solve all of the problems, so



each student might solve a different subset of problems and might get different grades
on each problem. I would like to give a good grade to a student who does sufficiently
well on a sufficient number of questions, and give a worse grade to a student who just
gets a few points correct on a lot of problems.

(a) How could I reduce this problem of determining grades to the knapsack problem?
(b) Is your reduction a polynomial reduction? Explain.

(¢) Do you feel this is an equitable form of grading? Do you feel it is a form of grading
that accurately captures the amount of learning a student accomplishes? Would
you like to have professors use this grading scheme to determine your grade? Why
or why not?



