
CS302 - Problem Set 4

1. Suppose you are hosting a music festival, and are trying to decide which bands should
play in the prime-time slot. You randomly surveyed 100 of the registered attendees to
have them rank the bands who will be at the festival. You have an unlimited number
of stages, so you can have many different bands play at the same time. You would
like to choose a subset of bands to play during the prime time spot such that (1) most
attendees will be excited about at least one of the bands, and also (2) most attendees
will not be excited about more than one of the bands (since this would make it so that
they couldn’t see both). For example, suppose some of the attendees like R&B, and
some like metal, but not many people like both R&B and metal. Then you could have
the most popular R&B band and the most popular metal band play the prime time
slot. This would be better than having both of your R&B bands play in the prime time
slot, even if they are both more popular overall than any of the metal bands, because
then the metal fans would not have anyone to watch in the prime time slot, and the
R&B fans would be annoyed that they would have to pick one of the bands to watch
and couldn’t see both.

(a) Describe a reduction from this problem to the Max Weight Independent Set
(MWIS) problem. The input to our problem is the survey data on the bands,
and the output should be a set of bands to play in the prime time slot.

(b) Explain why the reduction you described gives a good solution to the original
problem?

(c) Now that you’ve figured out who should perform in the prime time slot, how
should you pick which bands should perform in the second best slot using MWIS?

2. You have a shipping container that can hold W worth of weight (please ignore volume).
You have n types of items that you can ship. Item i is wi pounds and is worth vi dollars.
However, you can take a fraction of any item, so if you wanted, you could pack p×wi

pounds of item i, which would be worth p × vi dollars, where 0 < p ≤ 1. You would
like to pack the shipping container so that the total value is as large as possible.

Consider a greedy algorithm that evaluates a function f for each item. Then the
algorithm puts as much of the largest f -valued item in as possible. If there is still room
remaining, the algorithm goes to the next largest f -valued item, and so on.

(a) What function f should you use to rank items? (The obvious one is the one to
go with!)

1



(b) Let’s rename the items according to their f score so that item 1 has the highest
f -score, 2 the 2nd highest, and so on. (You may assume all f -values are unique.)
Because of the limited size of the shipping container, suppose that with the opti-
mal strategy we only end up putting the first m types of items into the container.
This means we put all of items 1, 2, . . . ,m− 1 in the container, and we put some
or all of item m into the container. Prove using a proof by contradiction that any
other strategy that doesn’t put all of items 1, . . . ,m− 1 and as much as possible
of item m into the container is not optimal.

(c) What is the runtime of this greedy algorithm?

3. Suppose you have n jobs, and each job i takes time ti > 0 and has a deadline di > 0.
Let the completion time Ci of a job be as defined as in class. Given an ordering of the
jobs, we call li = Ci − di the lag of a job i. We would like to minimize the maximum
lag: maxj lj.

(a) Propose function f to use to order jobs, and explain why it is reasonable given
the objective.

(b) Give a counter example to show that your greedy choice of f is not optimal.

(c) (Challenge) Determine the function f that gives the optimal ordering. (See last
page for solution.)

(d) Prove optimality of the greedy ordering from part (c).

(e) Briefly describe your algorithm and state its runtime.

4. Approximately how long did you spend on this assignment?

2



Hints
2a: f(i) = vi/wi

2b: Here is a way to start the proof:
Suppose for contradiction that the optimal a strategy does not put all of 1, 2, . . . ,m−1,
and as much of m as possible into the container. There are two cases: there is some
k ∈ {1, 2, . . . ,m−1} such that not all of item k is included, or an item with label l ≥ m
is included. (These two cases deal with all possible differences, including putting too
much of item m in instead of all of a lower numbered item, for example.)

3c: The optimal is f(i) = di.

3d: Hints for proof: The exchange is the same as in class. There are three cases
to consider: that the max lag is not one of the exchanged items, that the max lag
is the first of the exchanged items, or the max lag is the second of the exchanged
items. Remember that, given our ordering if i < j, then di < dj, and if li ≤ lj then
Ci − di ≤ Cj − dj. You’ll end up with a bunch of inequalities and you’ll have to show
that the max lag either stays the same or decreases.

3


