
CS302 - Problem Set 1

Please familiarize yourself with the sections of the syllabus on the honor code and problem sets
before starting this homework.

Solutions and hints for several parts of this problem set are on the final page so you can check
that you are on the right track or get moving if you are stuck, but try to do as much as possible
on your own first. To make the assignment more challenging, do not look at the hints.

1. This problem will help you to review and recall logarithms, exponentiation, summation, trees,
recurrence relations, geometric series, and big-O notation. If you would like additional review,
see

• CS200 texts

• Log Review resources

• Big-O text

Let T (n) be the runtime of a recursive algorithm on input size n. T (n) is described by
the recurrence relation

T (1) = O(1), T (n) = aT (n/b) +O(nd), (1)

where a, b, and d are constants.

(a) What do a, b, and d represent in terms of the structure of the algorithm?

(b) We can describe the structure of a recursive algorithm with runtime T (n) = aT (n/b) +
O(nd), T (1) = O(1) as a tree:

Each dot represents a call
to the recursive function

Original function call

1st level of recursion (in this example, there
are 3 recursive calls within the function)

2nd level of recursion

⋮

When you get to small enough inputs, hit the base case, and no
further recursive calls. Base cases are the leaves of the tree.

⋮

Each call to the function is represented by a vertex, the initial call of the function is the
root, and each recursive call produces a child vertex from the vertex of the function that
called it. In terms of n (the original input size), a, b, and/or d, how many levels will this
tree have (from the root to the leaves)? In other words, how many levels of recursion
will there be?

1

http://www.cs.middlebury.edu/~skimmel/Courses/302S20/syllabus.html#HC
http://www.cs.middlebury.edu/~skimmel/Courses/302S20/syllabus.html#assess
http://www.cs.middlebury.edu/~skimmel/Courses/Past/200F19/syllabus.html#Texts
http://www.cs.middlebury.edu/~skimmel/Courses/Past/200F19/logpower.html
https://middlebury.instructure.com/courses/5449/files/folder/CS200%20Rosen%20Chapters

(c) In terms of n (the original input size), a, b, and/or d, how many function calls are there
at the kth level of recursion? In terms of the tree, we can rephrase this question as how
many vertices are there in level k below the root?

(d) At each level of recursion, the size of the input to the function decreases. If the original
call had an input of size n, in terms of n, a, b, and/or d, what is the size of the input to
the function calls at level k?

(e) In terms of n (the original input size), a, b, and/or d, at a single vertex (function call) at
level k, how much time (how many operations) is used by that function call, excluding
any operations done in the recursive calls it makes. For example, in MergeSort, if the
input to a function call is size m, the work done at that call and ignoring the two
recursive calls is O(m), because we only look at the for loop part of the algorithm, which
takes time O(m).

(f) In terms of n (the original input size), a, b, and/or d, how much time (how many
operations) is used by all function calls at level k, excluding any operations done by the
further recursive calls they make? (Combine your answers to (c) and (e).)

(g) In terms of n (the original input size), a, b, and/or d, how much time (how many
operations) is used by all function calls in the algorithm (at all levels of recursion)?
(Please leave in summation notation.)

(h) Use the formula for geometric series:

t∑
k=0

rk =

{
t+ 1 if r = 1
rt+1−1
r−1 else

(2)

to evaluate the sum from the previous question.

(i) If a
bd

= 1, what is the big-O runtime of the algorithm? You should assume a, b, and d
are constants, and n is the variable that gets large.

(j) If a
bd
< 1 what is the big-O runtime of the algorithm? You should assume a, b, and d

are constants, and n is the variable that gets large.

(k) If a
bd
> 1 what is the big-O runtime of the algorithm? You should assume a, b, and d

are constants, and n is the variable that gets large.

(l) You should find that the runtime behaves differently depending on the 3 possible rela-
tionships between a

bd
and 1. Qualitatively explain the behavior in each case. I’ll do one

case as an example: if a
bd
< 1, that means that a tends to be small relative to b and

d. If b and d are large, that means that recursive calls happen on inputs that are much
smaller than the original input, and a lot of time/operations are spent *not* in recursive
calls. If a is small, that means there are not a lot of recursive calls. Putting these ideas
together, we expect that in this case the runtime will *not* be strongly dependent on
the recursive calls. From our analysis in part (j), we see that when a

bd
< 1, the whole

runtime of the algorithm is O(nd). However, note that the original function call uses
O(nd) time, excluding recursive calls! This means that all of the recursive calls in the
whole algorithm are basically not adding anything significant to the runtime, and the
majority of the runtime is spent at the top of the tree, at the root. This makes sense,
given our qualitative explanation that we expect the runtime to not be strongly affected

2

by recursive calls. (Now you should do a similar analysis for the other two cases: a
bd
> 1

and a
bd

= 1.)

2. The elements of a bi-tonic list either only increase, only decrease, or first increase and then
decrease.

(a) Write pseudocode for a recursive algorithm BMax that finds the maximum value of a
bi-tonic list of n distinct integers that runs in time O(log n).

Algorithm 1: BMax(A)
Input : Bi-tonic list A of distinct integers of size n
Output: The maximum value of A)
// Your pseudocode here!

(b) Prove your algorithm is correct. In the hints, I’ve given you two strong induction tem-
plates to use if you would like some help getting started.

(c) Create a recurrence relation for the runtime of your algorithm.

(d) Evaluate the recurrence relation using your result from problem 1, showing that the
algorithm indeed has runtime O(log n), and also provide an intuitive explanation for
why the runtime is what it is.

(e) (Challenge) How would each part of the problem change if we additionally allow lists
that first decrease and then increase? What about if we allow lists that change direction
twice (first increase, then decrease, then increase; or first decrease, then increase, then
decrease) or change direction k times?

3. For the closest points problem, we argued we only needed to look at points with x-coordinates
that were within ±δ of the midline, where δ is the smallest separation found in either the
left half or the right half of points. In this problem, we consider how that analysis would
change if we were to calculate the distance between points differently. Decide what range of
x-coordinates away from the midline you should consider if we instead used

(a) The Minkowski distance: d(pi, pj) = (|xi − xj |p + |yi − yj |p)1/p, for p ∈ R+. This dis-
tance is what you get on curved spacetime like in general relativity.

(b) The skewed distance: d(pi, pj) =
√

2(xi − xj)2 + (yi − yj)2. This distance would make
sense in a scenario where it is much harder to travel in the x-direction than in the y-
direction. For example, suppose to travel in the y-direction, you can get on highways,
but in the x-direction, you have to take local roads...like in Vermont! (Just try to get to
Maine from here!)

3

Hints:

1. • The following are a bunch of “tools” that will be helpful:

– x = ylogy x

– xlogy z = zlogy x

– (xy)z = (xz)y = xyz = xzy

– cy+1 = c× cy

– If c is a constant, O(logc n) = O(log n)

– If f(x) ≥ g(x), then O(f(x) + g(x)) = O(f(x)).

– If 0 < r < 1, then 0 < rt < 1 for any power t greater than 0.

• The solution to part (g) is

T (n) =

logb n∑
k=0

ak
(
n/bk

)d
. (3)

But if we pull out nd and group terms that are raised to the power of k together, we get

T (n) = nd
logb n∑
k=0

(a
bd

)k
(4)

• The solution to part (i-j) is

T (1) = O(1)

T (n) =


nd logb n if a = bd

nd if a < bd

nlogb a if a > bd
(5)

2. • For part (a), your algorithm should look very similar to binary search.

• For part (b), here are two templates:

Proof. We will prove BMax correctly returns the maximum value of any bi-tonic array of
size n ≥ 1 using strong induction.

Base case: When n = 1, ...

Inductive step: We assume BMax correctly returns the maximum value of any bi-tonic
array of size at most k, for k ≥ 1. Now consider an input of size k + 1...

Proof. Let P (n) be the predicate BMax correctly returns the maximum value of any
bi-tonic array of size n. We will prove P (n) is true for all n ≥ 1.

Base case: P (1) is true because...

Inductive step: Assume P (j) is true for all j such that 1 ≤ j ≤ k. Now consider an
input of size k + 1...

4

