
CS302 - Final Review

1. Given two strings x and y, create a dynamic programming algorithm to compute their optimal
edit distance, where the edit distance the numbers of insertions, deletions, substitutions, or
transpositions (switching the order of two adjacent letters), in some sequence that changes
x into y. The optimal edit distance is the smallest possible edit distance. For example, the
optimal edit distance of SHOAL and COLA is 3, as we can remove S, changing H → C,
and transposing the L and the A. Edit distance is useful for spell checking applications and
genomic applications.

Solution Let xi be the ith character in x, and let ~xi be the first i letters of x. Likewise for
y. Let T (~xn, ~ym) be the set of optimal transformations to turn ~xn into ~ym.

We note that the choice to do a transposition is only better than inserting/deleting/substituting
if the transposition will put both letters in the correct position.

Then

T (~xn, ~ym) =

T (~xn−1, ~ym−1) if xn = ym

T (~xn−1, ~ym) + delete xn from ~xn if last transformation is delete xn

T (~xn, ~ym−1) + add ym to ~xn if last transformation is add ym to ~xn.

T (~xn−1, ~ym−1) + sub xn with ym in ~xn. if last transformation is sub xn with ym

T (~xn−2, ~ym−2) + transpose xn, xn−1 in ~xn. if last transformation is transpose xn, xn−1

(1)

Converting this into pseudocode, we have

1

Algorithm 1: Edit(x, y)
Input : Two strings x and y.
Output: Minimum edit distance between x and y.

1 Initialize 2D array A of size (|x|+ 1)× (|y|+ 1) where A[i, j] will contain the edit
distance between ~xi and ~yj ;
// Base cases: To transform a zero-length string into a word, need

to add all letters. To transform a word into a zero-length

string, need to delete all letters

2 for i = 0 to |x| do
3 A[i, 0] = i;
4 end
5 for j = 1 to |y| do
6 A[0, j] = j;
7 end
// Filling in the main array

8 for i = 1 to |x| do
9 for j = 1 to |y| do

10 if x[i] = y[j] then
11 A[i, j] = A[i− 1, j − 1];
12 else
13 if i, j ≥ 2 and x[i] = y[j − 1] and x[i− 1] = y[j] then
14 A[i, j] = 1 + min{A[i, j − 1], A[i− 1, j], A[i− 1, j − 1], A[i− 2, j − 2]};
15 else
16 A[i, j] = 1 + min{A[i, j − 1], A[i− 1, j], A[i− 1, j − 1]};
17 end

18 end

19 end

20 end
21 return A[|x|, |y|];

2. DOUBLE-k-INDSET is the problem whose input is a graph, and the output is YES if and only
if there are at least 2 distinct independent sets of size at least k in the graph. By distinct, I
mean that the intersection of the two independent sets is empty. Prove DOUBLE-k-INDSET
is NP-Complete.

Solution First we prove DOUBLE-k-INDSET is in NP. The witness y should be the descrip-
tion of the vertices in the two independent sets. Then to check the witness, we first check
that no vertex appears more than once. Next we check that each set has at least k vertices
in it. Next we check each pair of vertices within each set, to make sure that there is no edge
in the graph between those two vertices. These checks take polynomial time in the size of the
input. Also, the witness y has size less than the total number of vertices, so it has size that
is polynomial in the input size. Thus DOUBLE-k-INDSET is in NP.

To prove DOUBLE-k-INDSET is NP-Hard, we use the same reduction from 3-SAT to k
independent set that was in the problem set, except we add an extra k vertices to the graph,

2

with no edges between them, and edges from those vertices to every other edge in the graph.
Thus these k vertices constitute a k-independent set, but none of them can be involved in
an independent set with any other vertices. Then there will be another k-independent set
amongst the remaining vertices if and only if the 3-SAT instance is satisfied (see previous
proof for why this is true). Thus there will be at least two distinct k-independent sets in the
whole graph if and only if there is a satisfying assignment to 3-SAT.

3. What is the average runtime of randomized search without replacement if there are c copies
of the item we are looking for out of an array of size n. Please use indicator random variables
and go through the usual routine. You do not need to simplify your final answer - it can be
a messy sum.

Solution The sample space is the set of all possible choices of guessed elements. Let X be
the random variable that is the number of guesses required to find an item we are looking
for. Let Xi be the indicator random variable that takes value 1 if we have at least i rounds.
Then

X =
n−c+1∑
i=1

Xi (2)

so using linearity of expectation

E[X] =
n−c+1∑
i=1

E[Xi] (3)

and using the properties of indicator random variables:

E[X] =

n−c+1∑
i=1

Pr(at least i rounds occur) (4)

Now the probability that there are at least i rounds is the probability that we haven’t
found one of the items in the first i− 1 rounds. This is

n− c
n
× n− c− 1

n− 1
× n− c− 2

n− 2
× · · · × n− c− (i− 2)

n− (i− 2)
(5)

Plugging in

E[X] = 1 +

n−c+1∑
i=2

n− c
n
× n− c− 1

n− 1
× n− c− 2

n− 2
× · · · × n− c− (i− 2)

n− (i− 2)
(6)

4. For the following statements regarding Dijkstra’s algorithm, either explain why it is true
(formal proof not required), or provide a counter example.

(a) Consider a graph G that is directed, has negative edge weights, but no negative cycles
(a negative cycle is a cycle where the sum of edge-weights in the cycle have negative
value.) Then there will always be a vertex where the incorrect distance is calculated.

(b) Consider a graph G that is directed, and that has a negative cycle that is reachable from
s. Then there will always be a vertex where the incorrect distance is calculated.

3

Solution

 Dijkstra's Algorithm Page 1

(a) This statement is false. Consider the graph on the right above. If we make it directed
so that the edges are (s, u), (s, v), and (v, u), and if we change the edge weight on (u, v)
to be 5, then the algorithm will find the shortest paths to all vertices.

(b) This statement is true. For every vertex on the negative cycle, the shortest distance is
negative infinity, because you can just keep going around the cycle to get to shorter and
shorter paths. But Dijkstra’s algorithm will give a finite distance to each of the vertices
on the cycle, which is incorrect.

5. Return to conference scheduling: Suppose you have n events, each with a start time si and
end time fi, for i ∈ {1, . . . , n}. Unfortunately, you only have one auditorium, and you can’t
schedule conflicting events (events where a start time of one is between the start time and end
time of another.) You would like to maximize the number of events that are held. Consider
an algorithm that at each iteration, picks the remaining event with the earliest finish time.
Prove this algorithm is optimal.

Solution Let’s re-label the events in the order in which they are chosen by this greedy
approach. Suppose K is the number of events that are actually scheduled. Events that can
not be scheduled/chosen are given labels from K + 1 to n. Let σ be this ordering.

Now suppose for contradiction that there is another algorithm that chooses events ac-
cording to order σ∗, and assume it can schedule more events than σ. We will display a series
of exchanges which transforms σ∗ to σ, while never decreasing the number of events that are
scheduled, proving a contradiction.

First note that if σ∗ chooses to hold events i, j such 1 ≤ i < j ≤ K, then σ∗ must also
hold event i before event j. Since i < j in σ, that means si < sj , so there would be no way
to schedule j before i.

Let i be the first event scheduled by σ∗ that is not in the same order as σ. There must
be some event like this, or σ∗ = σ. There are two cases. First, suppose i ≤ K. (In other
words, i is included is σ’s schedule.) By the above argument, i can only occur earlier in σ∗

than it does in σ. By the above argument, this means that event i − 1 is excluded from σ∗.
But because the order of σ∗ is the same as σ, that means we could consider a new schedule
σ∗′ that is the same as σ∗ but with i− 1 inserted before i. (Such a schedule is viable because
σ is a viable.) This new schedule would have more events scheduled than σ∗, a contradiction.

For the second case, suppose i > K. (In other words, i is excluded by σ’s schedule.) Let
q be the event that comes immediately before i in σ∗. Then let’s consider the schedule σ∗′

4

which is the same as σ∗, but with event i replaced with the event q + 1. We need to show
that σ∗′ is still a valid ordering. But recall that event q + 1 is the event with the earliest
end time among events with labels greater than q. This means that event i must have an
end-time later than event q + 1. Since all events after event i must start after its end-time,
we can safely replace event i with event q+ 1 without conflicting with any later events in σ∗.
This transformation from σ∗ to σ∗′ preserved the total number of events scheduled.

If we continue transforming the schedule according to the above two rules, we will either
encounter a contradiction (case 1), or end up (via sorting) in the same order as σ, without
increasing the number of events scheduled. Thus our original ordering σ must be optimal.

5

