Let $P_{i,v}$ be shortest s - v path with at most *i* edges.

Write $P_{i,v}$ in terms of subproblem $(P_{j,u})$

- $P_{i,v}$ has at most i 1 edges
- $P_{i,v}$ has *i* edges

Let $P_{i,v}$ be shortest s - v path with at most i edges.

Write $P_{i,v}$ in terms of subproblem $(P_{j,u})$

- $P_{i,v}$ has at most i 1 edges: $P_{i,v} = P_{i-1,v}$ (not using the power of extra edge)
- P_{i,v} has i edges: P_{i,v} = P_{i-1,w} + (w, v) for some (w, v) ∈ E (any path with i edges consists of a path with i - 1 edges followed by a final edge, and we should take the shortest path possible up to the final edge)

Let $L_{i,v}$ be length of $P_{i,v}$

Write recurrence relation for $L_{i,v}$.

Let $L_{i,v}$ be length of $P_{i,v}$

Write recurrence relation for $L_{i,v}$.