CS200 - Worksheet 1

A set is a collection of things. Those things could be numbers, letters, people, minerals, or other sets.

(The following is from *Discrete Mathematics, an Open Introduction* by Levin):

Set Theory Notation

- {,} We use these **braces** to enclose the elements of a set. So $\{1, 2, 3\}$ is the set containing 1, 2, and 3. (Roster notation)
- $\{x : x > 2\}$ is the set of all x such that x is greater than 2. : (set-builder notation)
- $2 \in \{1, 2, 3\}$ asserts that 2 is an element of the set $\{1, 2, 3\}$. E
- $4 \notin \{1, 2, 3\}$ because 4 is not an element of the set $\{1, 2, 3\}$. ¢
- \subseteq $A \subseteq B$ asserts that A is a subset of B: every element of A is also an element of *B*.
- $A \subset B$ asserts that A is a proper subset of B: every element of A \subset is also an element of *B*, but $A \neq B$.
- \cap $A \cap B$ is the **intersection of** A **and** B: the set containing all elements which are elements of both *A* and *B*.
- U $A \cup B$ is the **union of** A **and** B: is the set containing all elements which are elements of *A* or *B* or both.
- \times $A \times B$ is the **Cartesian product of** A **and** B: the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.
- $A \setminus B$ is A set-minus B: the set containing all elements of A which are not elements of *B*.
- A The **complement of** *A* is the set of everything which is not an element of A. (Depends on what "everything" is. Define U= universal The cardinality (or size) of A is the number of elements in A.
- |A|

The following are "famous" sets:

- $\emptyset = \text{empty set} = \{\}$
- \mathbb{N} = the set of natural numbers = {1, 2, 3, ...}. (Note: in DMOI, $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$)
- $\mathbb{Z} = \text{set of integers} = \{\dots, -3, -2, -1, 0, 1, 2, 3 \dots\}$
- \mathbb{R} = the set of real numbers
- \mathbb{Q} = the set of rational numbers
- 1. Let $T = \{x, y, \{g, h\}, k\}$. True or false:
 - (a) $g \in T$
 - (b) $\{g, h\} \in T$
 - (c) $\{g,h\} \subset T$

Solution

- (a) False
- (b) True
- (c) False
- 2. Describe the following sets in roster notation (list the first few elements). If the set is also "famous" give its symbol.
 - (a) $A = \{2^x : x \in \mathbb{N}\}$
 - (b) $B = \{x : x \text{ is even and } x \in \{1, 3, 5\}\}$
 - (c) $C = \{x \ge 0 : x \text{ is even or } x \text{ is odd}\}$

Solution

(a) $A = \{1, 2, 4, 8, 16, ...\}$ (b) $B = \{\} = \emptyset$ (c) $C = \{0, 1, 2, 3, 4, ...\} = \mathbb{N} \cup \{0\}$

3. Write the following in set-builder notation using as concise notation as possible

- (a) $\{2, 4, 6, 8, 10, 12\}$ (b) $\{2, 4, 8, 16, 32, 64\}$ (c) $\{0, -1, -2, -3, \dots\}$ (d) $\{1, 4, 9, 16, 25, 36, \dots\}$
- (e) $\{1, 3, 5, 7, 9, 11, \dots\}$
- (f) $\{1, 4, 9, 16, 25, 36, \dots\} \cap \{2, 4, 6, 8, 10, \dots\}$
- (g) $\{a, e, i, o, u\}$

Solution There are many correct solutions.

(a) $\{2x : 1 \le x \le 6\}$ (b) $\{2^x : 1 \le x \le 6\}$ (c) $\{-|x| : x \in \mathbb{Z}\}$ or $\{x : x \le 0, x \in \mathbb{Z}\}$ (d) $\{x^2 : x \in \mathbb{N}\}$ or $\{x : \sqrt{x} \in \mathbb{N}\}$ (e) $\{2x - 1 : x \in \mathbb{N}\}$ (f) $\{(2x)^2 : x \in \mathbb{N}\}$ or $\{x : x \text{ is an even square}\}$

4. Let $A = \{1, 2\}$ and $B = \{1, 2, 3\}$

- (a) What is $A \times B$?
- (b) What is $|A \times B|$?
- (c) Is $A \subset B$?
- (d) Is $A \subseteq B$?
- (e) Is $A \subset A$?
- (f) What is $A \setminus B$?
- (g) What is $A \cup B$?
- (h) What is $A \cap B$?

Solution

- (a) $A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$
- (b) $|A \times B| = |A| \times |B| = 6.$
- (c) Yes. Both 1 and 2 and elements of B.
- (d) Yes. Both 1 and 2 and elements of B.
- (e) No. \subset can only be used when the two sets are not equal.
- (f) \emptyset .
- (g) B. B already contains all the elements of A, so adding those elements doesn't do anything
- (h) A. The elements of A are in both. Only $3 \in B$ but $2 \notin A$.
- 5. Which of the following are the empty set:
 - (a) $\{x : x \text{ is odd and } 7 < x < 9\}$
 - (b) $\{0\}$
 - (c) $\{\emptyset\}$
 - (d) $\mathbb{Z} \cap \mathbb{Q}$

Solution: Only the first

6. Let A and B be sets with |A| = |B| such that $|A \cup B| = 7$ and $|A \cap B| = 3$. What is |A|? Explain.

Solution $7 = |A \cup B| = |A \cap B| + |A \setminus B| + |B \setminus A|$. But $|A \setminus B| = |B \setminus A|$ because |A| = |B|, so $|A \setminus B| = 2$ and $|A| = |A \cap B| + |A \setminus B| = 5$.

- 7. Let $X = \emptyset$, $Y = \{\emptyset\}$, $Z = \{\{\emptyset\}\}$. Are the following true or false?
 - (a) $\emptyset \in X$
 - (b) $\emptyset \in Y$
 - (c) $\emptyset \in Z$
 - (d) $X \subseteq Y$
 - (e) $Y \subseteq Z$
 - (f) $X \in Y$
 - (g) $Y \in Z$

Solution

- (a) False
- (b) True
- (c) False
- (d) True
- (e) False
- (f) True
- (g) True
- 8. Find sets A and B such that $A \subset B$ and $A \in B$.

Solution For example, $A = \{1, 2\}, B = \{1, 2, 3, 4, \{1, 2\}, 5\}.$

9. Does the empty set contain itself?

Solution No. The empty set contains nothing. If it contained the empty set, then it would no longer by empty!