$-R(n,m) \equiv$ every natural number less than m divides n

 $-T(n,m) \equiv$ there is a natural number les than m that divides n

 $-W(n,m) \equiv n$ and m don't have a common factor

 $-S \equiv$ between every two real different real numbers is another real number

- Rewrite $\neg \exists x : P(x)$ using \forall , rewrite $\neg \forall x, P(x)$ using \exists

 $(m|n \equiv m \text{ divides } n)$

 $-R(n,m) \equiv$ every natural number less than m divides n

• $\forall p \in \mathbb{N}, p < m \rightarrow p | n$

 $-T(n,m) \equiv$ there is a natural number les than m that divides n

• $\exists p \in \mathbb{N} : p < m \land p | n$

 $-W(n,m) \equiv n$ and m don't have a common factor

• $\neg \exists p \in \mathbb{Z} : p | n \land p | m$

 $-S \equiv$ between every two real different real numbers is another real number

• $\forall x, y \in \mathbb{R}, x \neq y \rightarrow \exists z \in \mathbb{R}: x < z < y \lor y < z < x$

- Rewrite $\neg \exists x : P(x)$ using \forall , rewrite $\neg \forall x, P(x)$ using \exists

•
$$\forall x, \neg P(x)$$
. $\exists x: \neg P(x)$