CS200 - Problem Set 6

1. Prove Algorithm 1 correctly outputs a list of the prime factors of an integer. The prime factors of n are a list of primes whose product is n. For example for input 60, the algorithm outputs: "2,2,3,5", since 2,3,5 are all prime, and $2 \times 2 \times 3 \times 5 = 60$. (To prove this result, you need to prove that the outputs are all prime, and that the product of all of the outputs gives you the input.)

```
Input : An integer n such that n \ge 2
  Output: String of the prime factors of n
  /* Recursive Step
                                                               */
1 d = 2;
2 while \neg d | n \operatorname{do}
3 d = d + 1;
4 end
5 if d = n then
     return "n";
6
7 else
     return "d,"+Factor(n/d). // + concatenates strings
8
9 end
                   Algorithm 1: Factor(n)
```

2. Max-Weight-Independent-Set is a problem with many applications, but is used in particular to schedule communications among cell towers. You might study it in CS 302. The following is a part of the correctness proof of the algorithm. Let $[m] = \{1, 2, 3, \ldots, m\}$. An independent set S on [m] satisfies: $S \subseteq [m]$ and if $i \in S$, then $i + 1 \notin S$ and $i - 1 \notin S$. Given a function $f : [n] \to \mathbb{N}$ and $1 \le m \le n$, we would like to find the independent set S on [m] such that $\sum_{i \in S} f(i)$ (the weight) is as large as possible. $\sum_{i \in S} f(i)$ is the sum of the values of f of all of the elements in the set S. Let S_m^* be the independent set with maximum weight on [m].

For example, if f(1) = 4, f(2) = 3, f(3) = 2, and f(4) = 5, then $S_4^* = \{1, 4\}$, and $S_3^* = \{1, 3\}$.

- (a) Prove that if there is a unique max-weight independent set S_m^* and if $m \notin S_m^*$, then $S_m^* = S_{m-1}^*$.
- (b) Prove that if there is a unique max-weight independent set S_m^* and if $m \in S_m^*$, then $S_m^* = \{m\} \cup S_{m-2}^*$.
- 3. How many bit strings of length 8 contain at least 6 consecutive 0's?
- 4. What is the tightest (smallest) big-O bound that you can prove on e^{-x} : O(1), O(x), or $O(2^x)$. Give a k and C for your response.

- 5. (a) What is the largest number of edges possible in an undirected graph with n vertices and no self-loops. (A self loop is an edge from a vertex back to itself). Please use a counting rule to count possible edges.
 - (b) What is the largest number of edges possible in an undirected graph with n vertices and self-loops.
 - (c) What is the largest number of edges possible in a directed graph (where every edge is of the form (a, b) if a and b are vertices) with n vertices and no self-loops.
 - (d) What is the largest number of edges possible in a directed graph with n vertices and self-loops.
- 6. How long did you spend on this homework?