
inspiration!

Picobot

area
already
covered

area not
covered

(yet!)

walls

Goal: whole-environment coverage
with only local sensing…iRobot's Roomba vacuum

Picobot…

Source: Harvey Mudd Computer Science Department

Surroundings
Picobot can only sense things
directly to the N, E, W, and S

For example, here its surroundings are

NxWx

N

EW

S

N E W S
Surroundings are

always in NEWS order.

How many distinct
surroundings are there?

N

EW

S

Surroundings

A) 6 B) 12 C) 24 D) 36

How many distinct
surroundings are there?

N

EW

S

xxxx Nxxx xExx xxWx xxxS NExx NxWx NxxS

xEWx xExS xxWS NEWx NExS NxWS xEWS NEWS
(won’t happen)

== 16 possible …24

Surroundings

State

Picobot's memory is a single
number, called its state.

State is the internal context of
computation.

State and surroundings represent
everything the robot knows about the world

Picobot always starts in state 0.

I am in state 0.
My surroundings

are xxWS.

Rules

Picobot moves according to a set of rules:

state

I am in state 0.
My surroundings

are xxWS.

surroundings

0 xxWS 0N

direction new state

If I'm in state 0
seeing xxWS,

Then I move North, and
change to state 0.

Aha!
I should move N.
I should enter state 0.

Wildcards

Asterisks * are wild cards.
They match walls or empty space:

0 x*** 0N

state surroundings direction new state

and EWS may be wall or empty space

I am in state 0.
My surroundings

are xxWS.
Aha! This matches x***

N must be empty

Wildcards

Asterisks * are wild cards.
They match walls or empty space:

0 x*** 0X

state surroundings direction new state

Don’t move!

I am in state 0.
My surroundings

are xxWS.
Aha! This matches x***

Give Picobot a Set of Rules:

0 x*** 0N

state surroundings direction new state

Picobot checks its rules from the top each time.

When it finds a matching rule, that rule runs.

->

0 N*** 0S->

Only one rule is allowed per state and surroundings.

What will this set of rules do to Picobot?

0 x*** 0N

state surroundings direction new state

->

0 N*** 0S->

A). Picobot will go North until it hits a wall and then it will go south.

B). Picobot will go south until it hits a wall and then it will go north

C). Picobot will go north until it hits a wall and then it will stop

D). Picobot will go north until it hits a wall, and then it will move south,
then it will go north, then south, then north, never stopping.

What will this set of rules do to Picobot?

0 x*** 0N
0 N*** 0X

state surroundings direction new state

Picobot checks its rules from the top each time.

Only one rule is allowed per state and surroundings.

When it finds a matching rule, that rule runs.

->
->

how can we get back down the screen?

What will this set of rules do to Picobot?

0 x*** 0N
0 N*** 1X

1 ***x 1S
1 ***S 0X

state surroundings direction new state

Picobot checks its rules from the top each time.

Only one rule is allowed per state and surroundings.

When it finds a matching rule, that rule runs.

->
->

->

->

To do Write rules that will always cover these two rooms.
(separate sets of rules are encouraged…)

but your rules should work regardless of Picobot's starting location

Challenge #1 Challenge #2
Picobot

P1: 1

CH13-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:27

13.2 Finite-State Machines with Output 863

Start

s0 s1 s2

1, 0

0, 0

0, 0

1, 0

0, 0

1, 1

FIGURE 6 A Finite-State Machine That Gives an Output of 1
If and Only If the Input String Read So Far Ends with 111.

is read is 1, because this combination of input and state shows that three consecutive 1s have
been read. All other outputs are 0. The state diagram of this machine is shown in Figure 6. ▲

The final output bit of the finite-state machine we constructed in Example 7 is 1 if and only
if the input string ends with 111. Because of this, we say that this finite-state machine recognizes
the set of bit strings that end with 111. This leads us to Definition 2.

DEFINITION 2 Let M = (S, I, O, f, g, s0) be a finite-state machine and L ⊆ I ∗. We say that M recognizes
(or accepts) L if an input string x belongs to L if and only if the last output bit produced by
M when given x as input is a 1.

TYPES OF FINITE-STATE MACHINES Many different kinds of finite-state machines have
been developed to model computing machines. In this section we have given a definition of one
type of finite-state machine. In the type of machine introduced in this section, outputs correspond
to transitions between states. Machines of this type are known as Mealy machines, because
they were first studied by G. H. Mealy in 1955. There is another important type of finite-state
machine with output, where the output is determined only by the state. This type of finite-state
machine is known as a Moore machine, because E. F. Moore introduced this type of machine
in 1956. Moore machines are considered in a sequence of exercises.

In Example 7 we showed how a Mealy machine can be used for language recognition.
However, another type of finite-state machine, giving no output, is usually used for this purpose.
Finite-state machines with no output, also known as finite-state automata, have a set of final
states and recognize a string if and only if it takes the start state to a final state. We will study
this type of finite-state machine in Section 13.3.

Exercises

1. Draw the state diagrams for the finite-state machines with
these state tables.
a)

f g

Input Input
State 0 1 0 1

s0 s1 s0 0 1
s1 s0 s2 0 1
s2 s1 s1 0 0

b) f g

Input Input
State 0 1 0 1

s0 s1 s0 0 0
s1 s2 s0 1 1
s2 s0 s3 0 1
s3 s1 s2 1 0

Create a finite state machine that outputs 1 if
and only if the most recent 3 input bits are 0.

Alter these "up & down" rules so that
Picobot will traverse the empty room… "Quiz"

the empty room
Hints: add E or W somewhere…

watch out for dead ends!

Ideas for the maze?

the maze

Hint: use the "right-hand-rule" !

Computer Science
Information is intrinsic to every system…
How can we benefit from this information?

Efficiently? Effectively? Possibly?

Representing it … Applying it … Measuring it

“create with”

Computer Science
Information is intrinsic to every system…
How can we benefit from this information?

Efficiently? Effectively? Possibly?

Representing it … Applying it … Measuring it

How to measure these
rooms' complexity?

“create with”

Computer Science

our best: 4 states, 8 rulesour best: 3 states, 6 rules

How many states
and rules are

really necessary ?

How much
information does

each system
contain ?

Information is intrinsic to every system…
How can we benefit from this information?

Efficiently? Effectively? Possibly?

Representing it … Applying it … Measuring it

“create with”

How to measure these
rooms' complexity?

Computer Science

This image: 20 kilobytes!This image: 5 kilobytes

How many states
and rules are

really necessary ?

How much
information does

each system
contain ?

Information is intrinsic to every system…
How can we benefit from this information?

Efficiently? Effectively? Possibly?

Representing it … Applying it … Measuring it

“create with”

How to measure these
rooms' complexity?

Happy Picobotting!

