
Linear Search

P1: 1

CH03-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:24

194 3 / Algorithms

of the terms of the sequence. To see this, note that the initial value of max is the first term of
the sequence; as successive terms of the sequence are examined, max is updated to the value
of a term if the term exceeds the maximum of the terms previously examined. This (informal)
argument shows that when all the terms have been examined, max equals the value of the largest
term. (A rigorous proof of this requires techniques developed in Section 5.1.) The algorithm
uses a finite number of steps, because it terminates after all the integers in the sequence have
been examined. The algorithm can be carried out in a finite amount of time because each step is
either a comparison or an assignment, there are a finite number of these steps, and each of these
two operations takes a finite amount of time. Finally, Algorithm 1 is general, because it can be
used to find the maximum of any finite sequence of integers. ▲

Searching Algorithms

The problem of locating an element in an ordered list occurs in many contexts. For instance, a
program that checks the spelling of words searches for them in a dictionary, which is just an
ordered list of words. Problems of this kind are called searching problems. We will discuss
several algorithms for searching in this section. We will study the number of steps used by each
of these algorithms in Section 3.3.

The general searching problem can be described as follows: Locate an element x in a list of
distinct elements a1, a2, . . . , an, or determine that it is not in the list. The solution to this search
problem is the location of the term in the list that equals x (that is, i is the solution if x = ai)
and is 0 if x is not in the list.

THE LINEAR SEARCH The first algorithm that we will present is called the linear search,
or sequential search, algorithm. The linear search algorithm begins by comparing x and a1.
When x = a1, the solution is the location of a1, namely, 1. When x ̸= a1, compare x with a2. If
x = a2, the solution is the location of a2, namely, 2. When x ̸= a2, compare x with a3. Continue
this process, comparing x successively with each term of the list until a match is found, where
the solution is the location of that term, unless no match occurs. If the entire list has been
searched without locating x, the solution is 0. The pseudocode for the linear search algorithm
is displayed as Algorithm 2.

ALGORITHM 2 The Linear Search Algorithm.

procedure linear search(x: integer, a1, a2, . . . , an: distinct integers)
i := 1
while (i ≤ n and x ̸= ai)

i := i + 1
if i ≤ n then location := i

else location := 0
return location{location is the subscript of the term that equals x, or is 0 if x is not found}

THE BINARY SEARCH We will now consider another searching algorithm. This algorithm
can be used when the list has terms occurring in order of increasing size (for instance: if the
terms are numbers, they are listed from smallest to largest; if they are words, they are listed
in lexicographic, or alphabetic, order). This second searching algorithm is called the binary
search algorithm. It proceeds by comparing the element to be located to the middle term of
the list. The list is then split into two smaller sublists of the same size, or where one of these
smaller lists has one fewer term than the other. The search continues by restricting the search
to the appropriate sublist based on the comparison of the element to be located and the middle
term. In Section 3.3, it will be shown that the binary search algorithm is much more efficient
than the linear search algorithm. Example 3 demonstrates how a binary search works.



Insertion Sort

P1: 1

CH03-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:24

198 3 / Algorithms

is not less than this element is found or until it has been compared with all j − 1 elements; the j th
element is inserted in the correct position so that the first j elements are sorted. The algorithm
continues until the last element is placed in the correct position relative to the already sorted list
of the first n− 1 elements. The insertion sort is described in pseudocode in Algorithm 5.

EXAMPLE 5 Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5 in increasing order.

Solution: The insertion sort first compares 2 and 3. Because 3 > 2, it places 2 in the first position,
producing the list 2, 3, 4, 1, 5 (the sorted part of the list is shown in color). At this point, 2 and 3
are in the correct order. Next, it inserts the third element, 4, into the already sorted part of the list
by making the comparisons 4 > 2 and 4 > 3. Because 4 > 3, 4 remains in the third position.
At this point, the list is 2, 3, 4, 1, 5 and we know that the ordering of the first three elements
is correct. Next, we find the correct place for the fourth element, 1, among the already sorted
elements, 2, 3, 4. Because 1 < 2, we obtain the list 1, 2, 3, 4, 5. Finally, we insert 5 into the
correct position by successively comparing it to 1, 2, 3, and 4. Because 5 > 4, it stays at the end
of the list, producing the correct order for the entire list. ▲

ALGORITHM 5 The Insertion Sort.

procedure insertion sort(a1, a2, . . . , an: real numbers with n ≥ 2)
for j := 2 to n

i := 1
while aj > ai

i := i + 1
m := aj

for k := 0 to j − i − 1
aj−k := aj−k−1

ai := m

{a1, . . . , an is in increasing order}

Greedy Algorithms

Many algorithms we will study in this book are designed to solve optimization problems.
The goal of such problems is to find a solution to the given problem that either minimizes or

“Greed is good ... Greed
is right, greed works.
Greed clarifies ...” –
spoken by the character
Gordon Gecko in the film
Wall Street.

maximizes the value of some parameter. Optimization problems studied later in this text include
finding a route between two cities with smallest total mileage, determining a way to encode
messages using the fewest bits possible, and finding a set of fiber links between network nodes
using the least amount of fiber.

Surprisingly, one of the simplest approaches often leads to a solution of an optimization
problem. This approach selects the best choice at each step, instead of considering all sequences
of steps that may lead to an optimal solution. Algorithms that make what seems to be the “best”
choice at each step are called greedy algorithms. Once we know that a greedy algorithm finds a
feasible solution, we need to determine whether it has found an optimal solution. (Note that we

You have to prove that a
greedy algorithm always
finds an optimal solution.

call the algoritm “greedy” whether or not it finds an optimal solution.) To do this, we either prove
that the solution is optimal or we show that there is a counterexample where the algorithm yields
a nonoptimal solution. To make these concepts more concrete, we will consider an algorithm
that makes change using coins.



What is the runtime?

• For i=1 to n
–For j=1 to i
• For k=1 to j
–Print(“Hello!”)

• For r=1 to i
–Print(“Good Bye!”)


