1. Show that there is a language $B \in \text{EXP}$ such that $\text{NP}^B \neq P^B$.

2. The class ZPP (zero-error probabilistic polynomial time) is another variant on BPP:

 Definition. $L \in \text{ZPP}$ if there exists a probabilistic TM (PTM) M such that if

 \begin{align*}
 x \in L &\iff \Pr[(M(x) = 1)] = 1 \tag{1} \\
 x \notin L &\iff \Pr[(M(x) = 1)] = 0 \tag{2}
 \end{align*}

 and for all x, $M(x)$ terminates in polynomial time *on average*.

 The idea with ZPP is that it always outputs the right answer, and usually it takes
 polynomial time, but it can sometimes take much longer. However, the likelihood of it taking
 a long time is small.

 Another way of defining ZPP, which we’ll call ZPP_2 is as follows:

 Definition. $L \in \text{ZPP}$ if there exists a probabilistic TM (PTM) M that can output the
 symbols $\{0, 1, ?\}$, where if

 \begin{align*}
 x \in L &\rightarrow M(x) \in \{1, ?\} \tag{3} \\
 x \notin L &\rightarrow M(x) \in \{0, ?\} \tag{4}
 \end{align*}

 and for all x, the probability that $M(x)$ outputs ‘?’ is less than $1/2$, and M runs in polynomial
 time.

 (a) Prove that $\text{ZPP} = \text{ZPP}_2$
 (b) Explain the significance of part (a).
 (c) Prove $\text{ZPP} \in \text{RP} \cap \text{coRP}$. Note that RP always terminates in polynomial time.