Goals
- Prove facts 3 and 4

Questions
- If we know that diagonalization and simulation fail, does that mean the only way to prove $P \neq NP$ is to invent a new proof technique?

Announcements
- Pet photos
- Seniors: Fill out 701 form

Let L_{EXP}^P be the set of all polynomial time TM M s.t. $x \in L_M$. Let M be a TM that takes in inputs x and in n steps on input x, where $x \in \{0,1\}^n$. Let M_1 be the machine that on input x and output $\langle x, M_1 \rangle$, M_1 runs in exponential time. So L_{EXP}.

Let L_{EXP} be the set of all polynomial time TM M s.t. $x \in L_M$. Let M be a TM that takes n steps on input x, where $x \in \{0,1\}^n$. Let M_1 be the machine that on input x and output $\langle x, M_1 \rangle$, M_1 runs in exponential time. So L_{EXP}.

Result: $P \neq \text{NP}$ can be used. Diagonalization to prove $P \neq \text{NP}$

Then $P \neq \text{NP}^P$. Create our oracle B.

- Enumerate all Turing Machines M_0, M_1, M_2...
- Start at $i=1$ (and assuming for each $i=2,3,...$ pick a number m_i (will tell how to pick later) and run M_i on input 1.
- Pick m_i to be the smallest number s.t.
 - $m_i < n$
 - No string of length n_i has been assigned.
- Run $M_i^B(1^n)$ for $(m_i)^{th}$ steps.
- Query $y \in B$ 00 in B? No

Look at list, if y is already assigned, be consistent.

- If $M_i^B(1^n)$ doesn't terminate in $(m_i)^{th}$ steps, or it outputs 1, then set all strings y s.t. $y|1|y$, that haven't already been assigned to "No".
- If $M_i^B(1^n)$ outputs 0 in $(m_i)^{th}$ steps, then assign one string of length n_i to be "Yes".

There are 2^n such strings: $M_i^B(1^n)$ only ran $(m_i)^{th}$ steps 2^n.