Runtime of \[\text{MaxSAT} \]?
Big Picture?
How would we need to change proof to show \[\text{TOBF} \] is \[\text{NPSPACE} \] hard?

"\[y = f(x, c) \] now is a formula that checks if \(x \) results from \(c \) from other monolithic check"

L \[\in \text{NPSPACE} \] \[\Rightarrow \]

\[\text{L Solver} \]

\[x \in L \]

\[\text{Pay Stack} \rightarrow \]

\[\text{Pay Stack} \rightarrow \text{TOBF} \]

\[\text{Pay Stack} \rightarrow \text{L Solver} \]

\[\text{Colapse!} \]

Reductions Review (Proving L \[\in \text{Class-Hard} \]):

1. **Direct:** \(L \in \text{Class}, \exists \text{ TM } M \text{ w/ Property } A \)
 and can use transition function \(f \) of \(M \) to create conversion function \(f \) from \(L \) input to \(L' \) input
 \[x \in L \]

2. **Boost-Step:** Know \(L' \) is Class-Hard.
 \[\text{Create conversion function } f \text{ from } L' \text{ input to } L \text{ input} \]
 \[x \in L' \]

3-SAT: \[\Pi(x) \]: \(x \) describes a 3-SAT instance where each variable \(u_i \) appears in at least 3 clauses

Prove 3-SAT is NP-Hard

\[x = (u_1, u_2, \ldots, u_n) \]

\[x \in \text{3SAT} \]

\[\text{Don't figure out!} \]

Create \(f \) to turn \(x \) into 3-SAT instance

\[(u_1, u_2, u_3) \land (u_1, u_2, u_4) \land (u_1, u_2, u_5) \land \ldots \]

\[(u_1, u_2, u_3) \land (u_1, u_2, u_4) \land (u_1, u_2, u_5) \land \ldots \]

- Replace \(f \)th occurrence of \(u_i \) with \(u_{ij} \) poly-time
- For each \(u_i \) except last include clauses poly-time

\[(u_{ij}, u_i, u_j) \land (u_{ij}, u_i, u_j) \land \ldots \]

- If \(x \in \text{3SAT} \), \(\exists (u_1, u_2, \ldots, u_n) \) a satisfying assignment
 - Then \(u_{ij} = u_j \) will satisfy \(f(x) \).
 - If \(f(x) \in \text{3SAT} \), all \(u_{ij} \) must have same value.
 - Set \(u_i \) to have that value poly-time satisfying assignment for \(x \).