• Where is coNP in our picture?
• For any finite sized language in NP, the complement of that language will be infinitely large, which doesn’t seem useful.

\[P \subseteq \text{coNP} \quad \text{coNP} \subseteq \text{EXP} \]

Let \(L \in P \). Then there exists a polytime \(TM \) such that \(M(x) = 1 \) iff \(x \in L \). Consider \(TM \) \(M' \) that outputs the opposite of \(M \) \((\text{accept} \leftrightarrow \text{reject}) \). \(M' \) decides \(\bar{L} \), therefore \(\bar{L} \in P \). Thus \(\bar{L} \in \text{NP} \). So \(\bar{L} \in \text{coNP} \).

Let \(L \in \text{coNP} \). Then \(\bar{L} \in \text{NP} \). Then \(\bar{L} \in \text{EXP} \). Thus \(L \in \text{EXP} \).

\[\exists \text{ exponential time } TM \ M \text{ that decides } L \text{. Consider } M' \text{ that acts like } M \text{ but exchanges } \text{accept} \leftrightarrow \text{reject} \]

\(M' \) decides \(L \).

\[\text{accept} \quad \text{reject} \]