1. \(a \times 2 = 4 \) and \(a \times 5 = 10 \).
2. \(b \times 2 = 4 \) and \(b \times 5 = 10 \).
3. \(c \times 2 = 4 \) and \(c \times 5 = 10 \).
4. \(e \times 2 = 4 \) and \(e \times 5 = 10 \).

Question: What is the solution?

Solution:

1. \(a \times 2 = 4 \) and \(a \times 5 = 10 \).
2. \(b \times 2 = 4 \) and \(b \times 5 = 10 \).
3. \(c \times 2 = 4 \) and \(c \times 5 = 10 \).
4. \(e \times 2 = 4 \) and \(e \times 5 = 10 \).

It appears that each letter is multiplied by the same number to get the corresponding digit. To find the solution, we need to determine the common factor for each letter. Let's denote the common factor by \(f \). Then we have:

- For letter \(a \): \(a \times 2 = 4 \) implies \(a =
- \) for letter \(b \): \(b \times 2 = 4 \) implies \(b =
- \) for letter \(c \): \(c \times 2 = 4 \) implies \(c =
- \) for letter \(e \): \(e \times 2 = 4 \) implies \(e =

Given that \(f \) is the common factor, we can deduce that:

- For letter \(a \): \(a = \frac{4}{2} = 2 \)
- For letter \(b \): \(b = \frac{4}{2} = 2 \)
- For letter \(c \): \(c = \frac{4}{2} = 2 \)
- For letter \(e \): \(e = \frac{4}{2} = 2 \)

Therefore, the common factor \(f \) is 2, and the solution is:

- \(a = 2 \)
- \(b = 2 \)
- \(c = 2 \)
- \(e = 2 \)