

Learning Goals

Describe multigubit algorithms using circuits + kets

Multigubit Circuit

Measure each gubit
in standard basis
$$M = \frac{9}{10}, \frac{1}{17}$$

At the end of the algorithm, State can be written as e.g.
$$|\Psi_{+}\rangle = \frac{1}{110}|01000\rangle + \frac{i}{110}|110101\rangle + \sqrt{\frac{3}{10}}e^{\frac{2\pi i}{3}}|100010\rangle + \frac{1}{12}|111101\rangle$$

$$|\psi\rangle = 2 a_s |s\rangle$$
 s.t. $a_s \in C$, $\frac{2}{s \in 20,13}$ = $\frac{1}{s \in 20,13}$

When Measure (4) in standard basis, get outcome 157 with probability [as]?

$$|\Psi_{+}\rangle = \frac{1}{10}|011000\rangle + \frac{i}{10}|110101\rangle + \sqrt{\frac{3}{10}}e^{2\pi i/3}|100010\rangle + \frac{1}{12}|111101\rangle$$

What is the probability of measuring [100010)

A)
$$(\frac{3}{10}e^{2\pi i/3})$$
 B) $(\frac{3}{10}e^{2\pi i/3})$ D) O

Partial

Nhen measure first k qubits in standard basis,

→ Rewrite 147 by pulling out standard basis states

of measured qubits

$$|\psi\rangle = |000.0\rangle \left(\frac{2}{6} a_{i,0000}|i\rangle\right) + |000.1\rangle \left(\frac{2}{6} a_{i,000.1}|i\rangle\right) + ...$$

$$|000.1\rangle \left(\frac{2}{6} a_{i,0000}|i\rangle\right) + ...$$

$$|000.1\rangle \left(\frac{2}{6} a_{i,000.1}|i\rangle\right) + ...$$

Probability of outcome $|000.1\rangle$ is $|2||\alpha_{i,0001}||^2 = P_{0001}$ if $|2||\alpha_{i,0001}||^2 = P_{0001}$

Remaining gubits collapse to 1 2 ai,000-11 >

ex: $|\Psi_{+}\rangle = \frac{1}{110}|011000\rangle + \frac{i}{110}|110101\rangle + \frac{3}{110}e^{xi}|_{3}|100010\rangle + \frac{1}{15}|111101\rangle$ Measure $|S^{\dagger}|_{2}$ gubits: $|\Psi_{+}\rangle =$

Prob of outcome 111)

Collapses to

Universal Gate Set																		
Classicallu					C	re 1	Z . V	wive	irsal	ga	te_	se J	<u> </u>			•		
	٠	•		٠	٠	•			. 1	,		٠	•	٠		٠	٠	•
any Boole	au. f	unch	NO	Can	be	cre	ate	d c	KSIN (Z .	AND	٦. (No	Τ.	(Not	eff	ici.lV	Hy)
	٠	•	•	٠	•	•	•	•	•		•	•	•	•		•	٠	•
o Ourantundi		٠	٠	٠	٠	٠	•	•	•		•	•	٠	٠		٠	٠	•
· Quantuml	√		•	٠	•	•					•	•	•	•		•	٠	•
Problem?	•	•	٠	٠	٠	•	•	٠	•		•	٠	•	٠		٠	٠	•
11000011	٠	•	٠	۰	٠	•		•	•		•	•	•			٠	٠	•
	٠	•	٠	٠	٠	•		•	•		•	•	•			٠	٠	•
	٠	•		٠		•	•	•	•		•	•	•				٠	•
def:	•	•	•	٥	6	•						•	•	•		•	٠	•
,	•	•	٠	•	٠	٠	•	•	•	•		•	٠	٠	•	•	•	•

$$|0\rangle \rightarrow |0\rangle$$

$$|1\rangle \rightarrow e^{i\pi/4}|1\rangle$$