ENTANGLEMENT + CHSH

Goals

- · Describe entangled states + product states
- · Determine if a 2-gubit state is entangled · Describe why entanglement helps us win CHSH
- · Analyze 2-qubit systems

Announcements

- · In class exam Thursday QII, QIZ (15 min, no notes)
- · Review where to find notes on Canvas

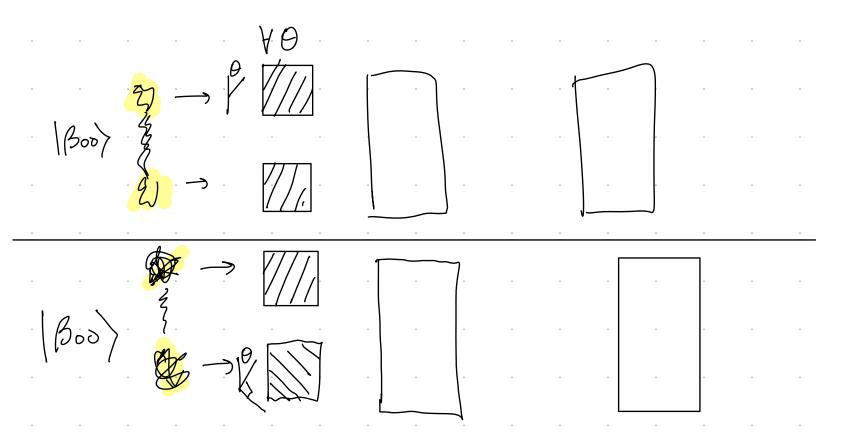
Exit Tickets

Exit Tickets
· How many gubit states are there?
A) 2 B) 4 C) COUNTABLY D UNCOUNTABLY
Does this represent a gubit state?
147= - 10> + - 10>
A) YES B) NO C) Maybe D) IDK
· When
· Does orientation/order of 107, (1) matter?
· Bra physical? Bra name? • IIII vs &10>,117} · No sines/cosines on exam (or will provide)

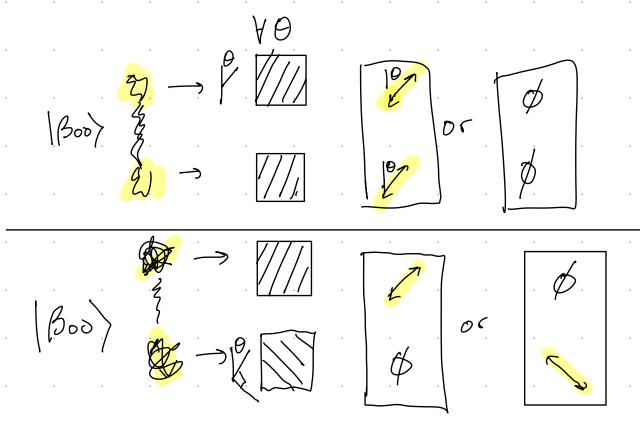
CHSH Game	(Clauser, Horne, Shim	ong, Holt)	(Bell Inequality)
i Time	Referee		E \{0,1\}
	tmir Bei		
Amir + Be			
x x, y	winning condition		
00,01,10			

. What	16	Mis	give	2. Y	nem	. ea	ch	,a	3u	biti	7,			•	•		
Diamond		Ay	Mjr						B	ei							
Nitrogen Vacancy gubit		. \				•	•	•			٠	٠	٠		٠		
				٠										٠			
			٠	•			•		٠								•
thow .	do ,	We 1	repré	Sevi	· +)	tha	. COV	й <i>Д</i> !/	ned	Sh	tat (2 6) (both	n. 9	zuloi-	ts ?

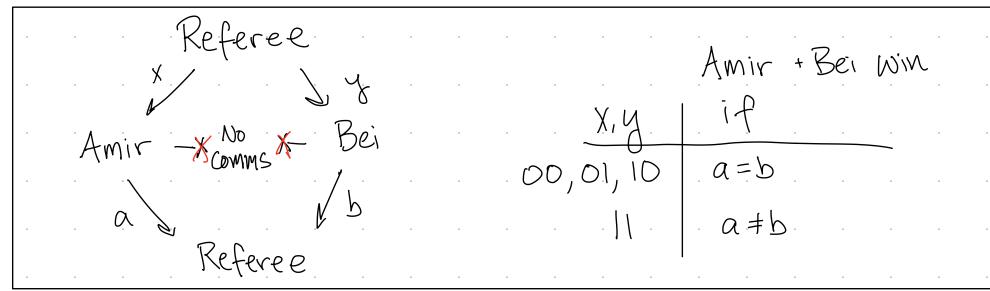
A: 1078/17 B: 10/11/2 C: 1017 AB D: 1017


Strategy:

A Amir


Bei

$$Q_{0} = Q_{0} =$$


To 100/ + To 111) AB is Entangle d!

12/00/AB 12/11) AB is Entangle !

CHSH Game

Strategy

A
$$|\Psi\rangle_{AB} = \frac{1}{12}(|00\rangle + |11\rangle)$$

Success Prob? Why?

Awir Receives	Amir does Measurement	Bei Receives	Bei does Measurement
	$\frac{1}{\alpha} = 0$ $\alpha = 0$ $\alpha = 1$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
x X = x ($\alpha = 0$ $\alpha = 1$	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right)$	$\begin{array}{c c} & & & \\ \hline & &$

Quantum Entanglement

def:

A state 14/AB is a product state if 3 147, 1427 St. 142=14, 142B

A state 14/AB is entangled if \$ 1417, 142 St. 142 = 141/A12/B

There are valid 2-gubit states that can't be described as A system in a state + B system in a state.

Similar to classical correlation

 $\frac{Qubit}{|\Psi_{i}\rangle_{A}} = a_{0}|0\rangle + a_{i}|1\rangle$

 $\frac{\hat{Q}ubit}{|V_2\rangle_B} = b_0|0\rangle + b_1|1\rangle$

Combined: 14) AB

Let (Boo) = = = (1007 + 1117)

Prove (Boo) is entangled.

Pf: Assume for contradiction 1800> is not entangled.

A state 14/AB is not entangled if 3/417, 142 St. 142/B

Of have 2-gubit state $|\Psi\rangle_{AB}$ and measure A gubit with $M_A = \frac{5}{2}|A_0\rangle$, $|A_1\rangle$ and B gubit with $M_B = \frac{5}{2}|B_0\rangle$, $|B_1\rangle$

Get outcome with prob. State collapses to

How many measurement outcomes are there?

A) 2 (Ma and MB) B) 4 ((20) (B0), (20) (B1),)

() Not enough information

of have 2-qubit state 14/AB and measure A gubit with $M_A = \frac{9}{2} |307, 12.79$ and B gubit with $M_B = \frac{9}{2} |307, 13.73$ Get outcome | X; > (Bj) with prob. | (X; | Bj|B|V) State collapses to |xix Bj>B 9 Suppose Amir + Bei cannot communicate, but share 14) AB (UNKNOWN States). If Amir Measures $M_A = \frac{5}{2}|0\rangle, 11\rangle$ and Bei measures $M_B = \frac{5}{2}|+\rangle, 1-\rangle$ and they get outcome $|0\rangle, |+\rangle_B$, what does Amir know about the two qubits after the measurements if communication? A) Nothing
B) A is in 10>, B unknown C) A is in 107, B in 1+7

Example: 147/AB= 1007+ 1/2 117

MA = 21+7,1-73 MB= 21+7,1->3

 $|\langle \alpha_i | \langle \beta_j | \beta_i | \psi \rangle_{AB}|^2$

Probability of 1+7/1-78?

Practice: Start P53 # 4a