QUANTUM CRYPTOGRAPHY

Learning Goals
(simple)
Predict outcome of quantum polarization measurements

· Describe BB84 quantum crypto protocol and why it is secure

Announcements

Exit Tickets

Secret Key Cryptography

Alice

Bob

Company

Co

Problem: How to share secret key?!

Current Solution:

Looming Problem:

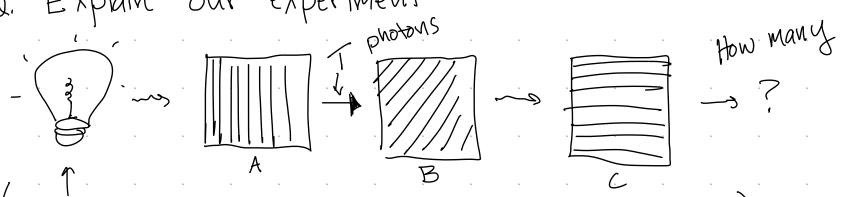
When one door closes, another door opens
Public Key
Crypto

To do guantum crypto, need quantum particles

Photons => individual particles of light

Polarizer Demo: If insert diagonal filter between horizontal and vertical polarizers, how much light will come through?

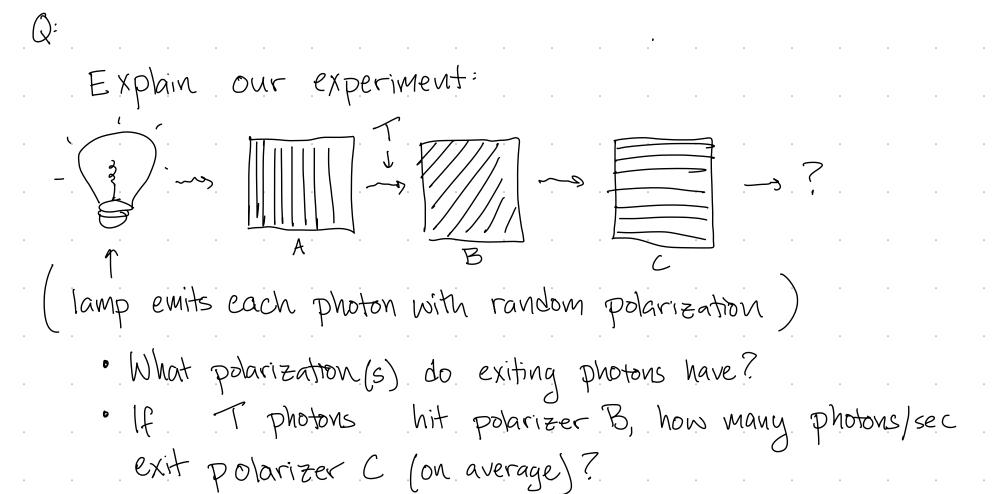
A same as B Less than C Same as D More than Single filter Single filter Single filter


'Thotons + Tolarizers Vertical polarized Filter with same polarization diagonally polarized Filter with perpendicular polarization horizontally >>>> Filter with 45° polarization

*Behavior only depends on angle between photon polarization + polarizer

VExiting photons have same polarization as filter

Group	Mork	


Q: Name, pronouns (optional), what kind of group problem solver are Q. Explain our experiment:

(lamp emits each photon with random polarization)

- · What polarization (s) do exiting photons have? · If T photons hit polarizer B, how many photons exit polarizer C?

(Learning target QII -> Foundational)

Quantum CryF	0+0, (BB84)			
Cl (basis bit)	(info bit)	Photon	gubit state	e
vert) S O				
diag				

|. Alice chooses a, b & \foint \foint \foint \tandomly.

Measurem	ent bas	is bit) Mea	.SUre1	ment	M.	las u	y eme	en f	bac))
	O 1 1			٠			٠	٠	٠	٠	
										•	
2. Bob (

3.

exi Round
123

1st Photon

2nd Photon

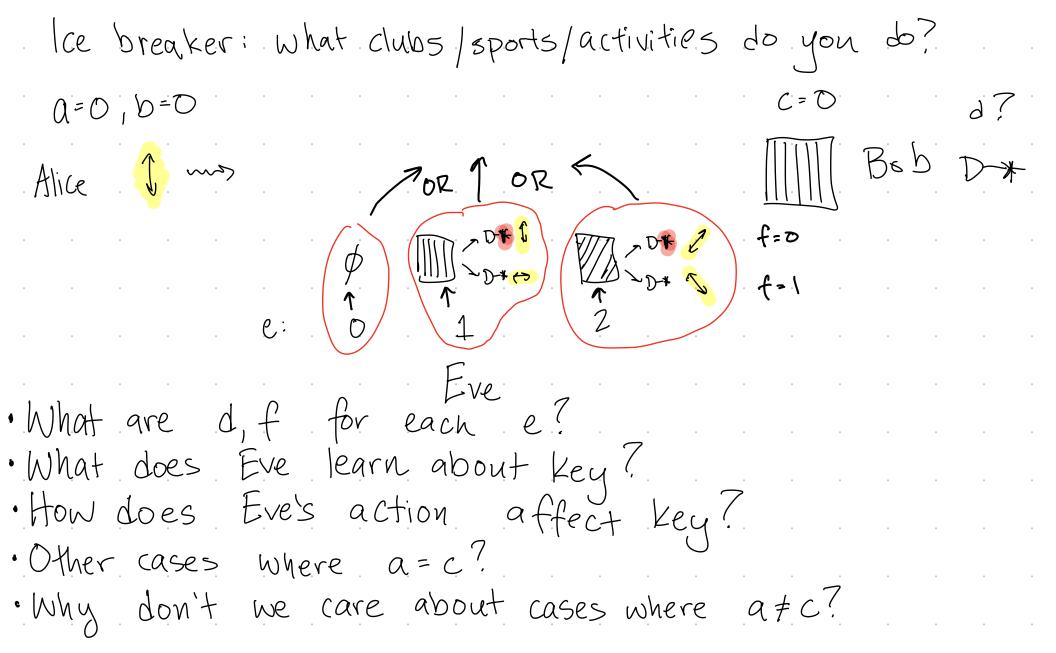
(ζ=

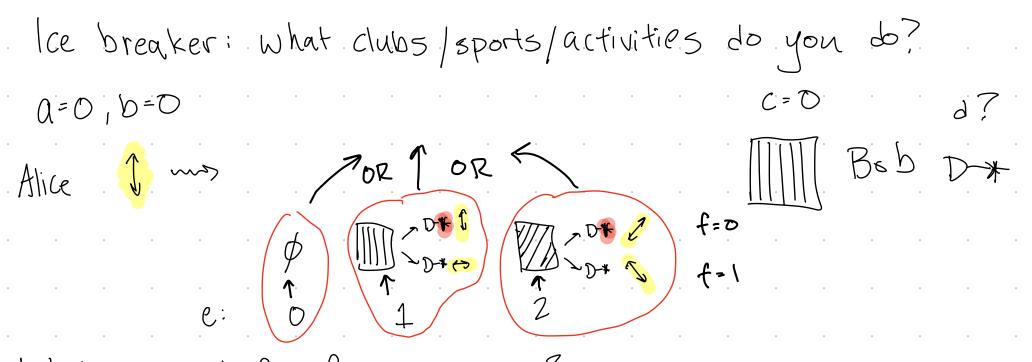
P=

_ =

4 =

Q: If a = Ci then


A) bi = di B) bi ≠di C) bi = di 1/2 the time


Q: If ai +ci then

A) $b_i = d_i$ B) $b_i \neq d_i$ C) $b_i' = d_i$ 1/2 the time

What about Eve?? (She knows protocol, just not particular Choices
Possible strategy for Eve: Chooses e & \{0,1,2\}^L at random
· Chooses e e \(\frac{7}{2} \) at random
Defection J
e= detection detection detection
2 lets photon pass undisturbed
Records f= { detection 1 no detection 2 no measurement
2 no measurement
Has to make their choice before a, c announced.

of

- · What are d, f for each e?
 - C = O →
 - . e = \ . :

- · Other cases where a = c?
- · Why don't we care about cases where a + c?

The more Eve interfers, the more b' \(\forall \) (b', \(\forall \) = remaining \\

+ the more Eve knows about b', \(\forall \).

Seems bad \(\tau \) actually ok.

6. A + B make public a random subset of bits of b', \(\forall \) to detect Eve

Remaining strings: b", d"

7. Alice	+ Bab error correct b", d"	(parity checks)	٠
	Outcome.		٠
			٠
			٠
			•
			٠
8. A & B	do privacy amplification		
	Outcome		٠
			•

As a group Review BB84 protocol

- "Generate questions
- · BB84 produces a secret key that is guaranteed secure from any evestropper. What is the quantum secret sauce?