FACTORING	
<u>Learning Goals</u>	
· Analyze a multi-gubit algorithm	
· Analyze a multi-gubit algorithm · Become familiar with Shors factoring algorithm (most famous	g. alg.)
Announce ments	
No Of Tuesday	2 3×5"
Proj Update, No OH Tuesday Exam: all but (xC4 (11/13 Thurs. in class)	
Need help researching your project? STEM librarian drop-in hours: Web 2-4 Murs. 12-2	D-Contor
· Murs. 12-2)

Tidy Tuesdays - opensource worldwide data analysis.

Tuesday in Nov. 3:30-5 in O-center

Review notes (3 min, 1-2 pts to share)

· Small group sharing (5 min)

· Larger group reflecting on something
you heard. (25 min)

The fields of quantum computing and computer science are engaged in discussions perceived inclusive language vs. perceived exclusionary language. We are asking questions like: can language choices foster inclusivity? Are inclusive language choices mere virtue signalling? How do we draw the line between acceptable and unacceptable language as social norms and language changes? Is it important for scientific communities to engage in reflection and discussion of language use, or should scientific communities focus their attention on scientific discovery?

CS333 - Long In-Class Exam 2

Put your answers entirely in the boxes corresponding to that question. If you need additional space, put a note *within* the corresponding box saying that the work continues on scratch paper, and clearly label any additional pages you submit with the problem number and your name.

This exam should be completed on your own, with at most two 3 inch x 5 inch notecards.

Please write and sign the honor code in the box. (I have neither given nor received unauthorized aid on this assessment.)

Possibly helpful things:

• The geometric series formula:

$$\sum_{m=0}^{t-1} a^m = \begin{cases} t & \text{if } a = 1\\ \frac{1-a^t}{1-a} & \text{else} \end{cases}$$
 (1)

• QFT_N , which is QFT acting on an N-dimensional state, transforms the standard basis state $|w\rangle$ as

$$|w\rangle \to \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{2\pi i x w/N} |x\rangle,$$
 (2)

• The gate Y acts as:

$$|0\rangle \to i|1\rangle$$
 (3)

$$|1\rangle \to -i|0\rangle$$
 (4)

Lxit Tickets

- · Non-repetetive function? >> Next algorithm
- · Other Similar Problems? > PS9
- · Largest number factored using Shor's alg

(C) 91 (D) 221 9×13 (13×17)

- * without shortcuts that are not scalable (Monz et al 2016, Smolin et al)
- · Classical Part on Exams?

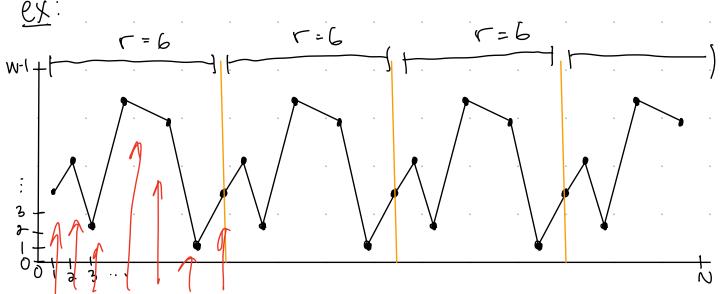
Exit Tickets

$$|\Psi_{3}\rangle = \sqrt{\pi} \sum_{m=0}^{N-1} |b^{\dagger} + mr\rangle \qquad (after partial meas. collapse)$$

$$|\Psi_{4}\rangle = QFT |\Psi_{3}\rangle = \sqrt{\pi} \sum_{m=0}^{N-1} QFT |b^{\dagger} + mr\rangle$$

$$= \sqrt{\pi} \sum_{m=0}^{N-1} \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} \frac{1}{\sqrt{N}$$

Switch order of summation

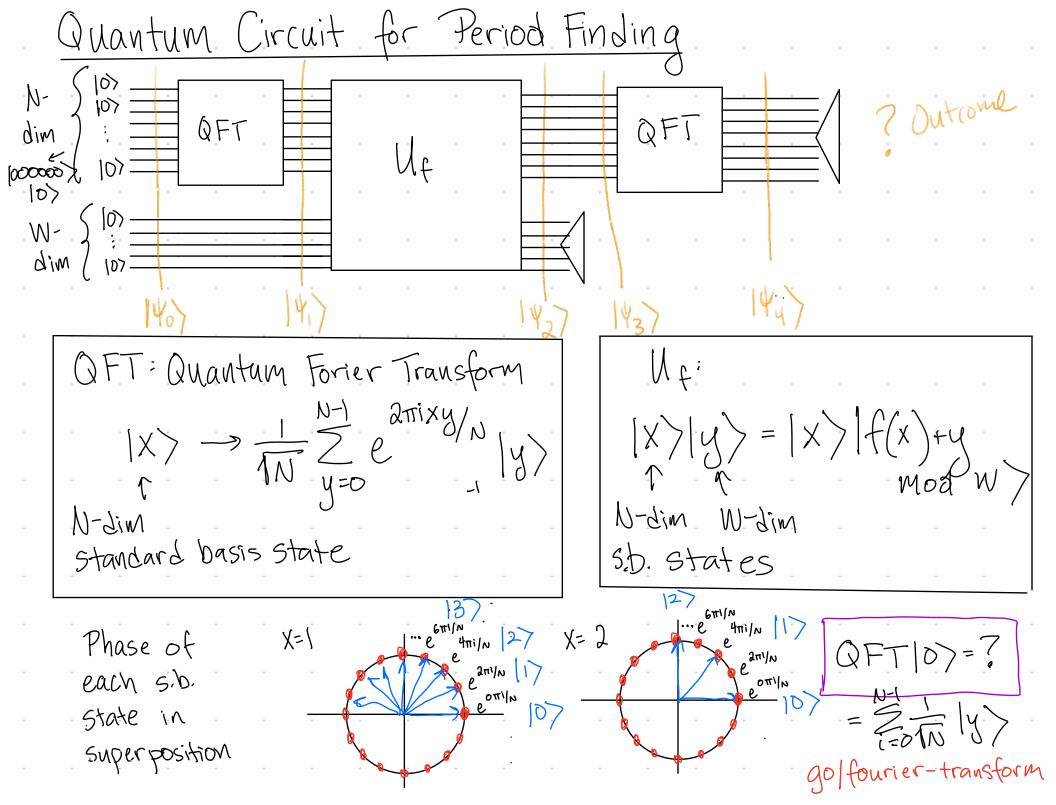

M = Alice M

(M, Kpub)

(M) Eve $M = g(\overline{M}, Kpri)$ Secret Message M E go, 13 n No access: M, Kpr: Eve has access to: (m, Kpub, f If she could solve a (hard math problem) & M factoring a large number 6701128736.... 617 digits \$ 100K for 308 digit \$ 200 K prize 250 Sigit Quantum Computes Can Efficiently tactor

Factoring reduces (via number theory) to period finding:

Period Finding Problem
Input: Query access to f: \(\frac{2}{2} \) \(\lambda_1 \rangle \) \(\lambda_



Output: r

What is the classical guery complexity of factoring?

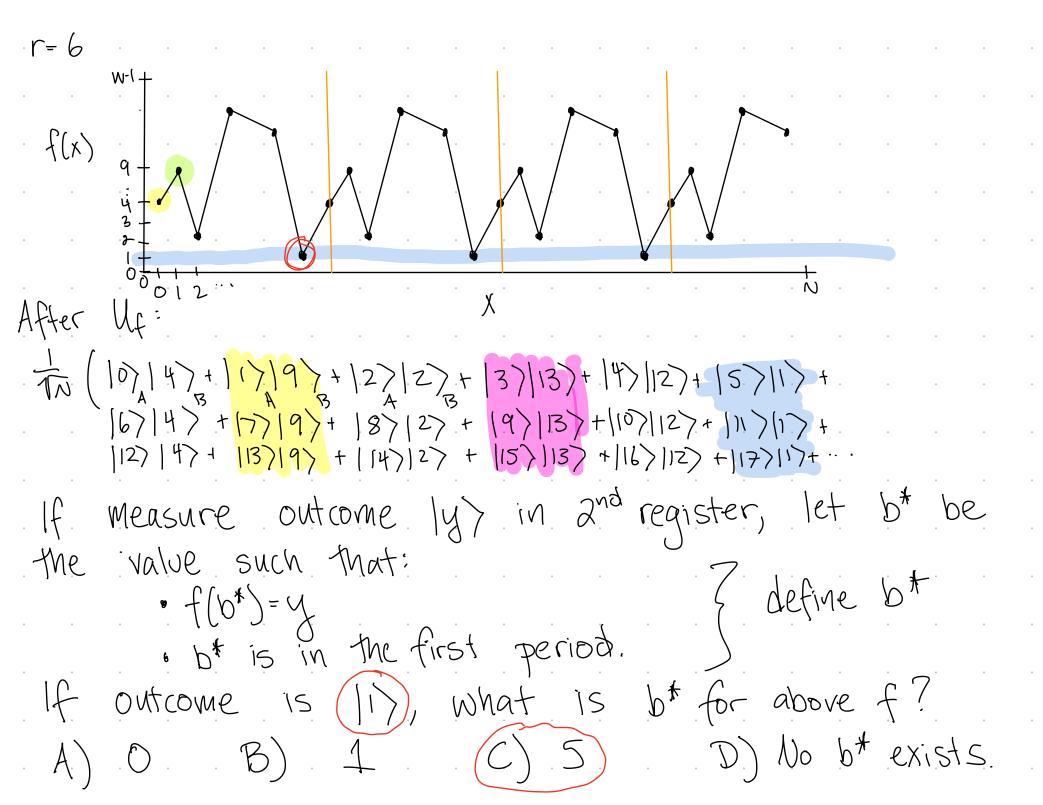
(A) O(Tr) (B) O(r) (C) O(r²) (D) O(D)

Bits to Digits
Classically, we code using base 10, not binary. We'll do same:
Standard Basis States:
1011) (0011) (100), (101), (10), (117)
$\frac{24}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{1}$ $\frac{1}{3}$ $\frac{1}{1}$ 1
Ambiguity: 16-dimensional system [1] N-dimensional system [2] [3]
$ 3\rangle \rightarrow 011\rangle$ $i \in \{0,1\}^m$ $j=0$
137 -> 1000011)
If 137 is an N-dimensional state, how many qubits are
in the system?
A) $\lceil \log_2 3 \rceil$ B) 3 (c) $\lceil \log_2 N \rceil$ D) N

Reminder:
$$U\left(Zaili\right) = ZaiUli$$

· Measure entire state:

$$|\Psi\rangle = \sum_{X=0}^{N-1} a_X |X\rangle \implies \text{Prob of outcome } |X\rangle \text{ is } |a_X|^2$$


- · Partial Measurement (B system)
 - · Factor standard basis states of measured register
 - · Collapse + renormalize

;

Excercise: Analyze! 10> 10> 10> $|\Psi_{i}\rangle = (QFT \otimes I)|0\rangle|0\rangle = (QFT |0\rangle) \otimes |0\rangle$ $= (\frac{1}{10}) \sum_{y=0}^{N-1} e^{2\pi i \cdot 0} y/N |y\rangle \otimes |0\rangle = (\frac{1}{10}) \sum_{y=0}^{N-1} |y\rangle \otimes |0\rangle$ >= Uf (1/2 /2) 0 /0) = Uf (1/2 /2) 1 -- (N-1) /0) $|X\rangle|Y\rangle = |X\rangle|\{f(x)+y\} \mod W\rangle$

=
$$U_f : \frac{1}{\sqrt{N}} (10) = 10 + 10 + 1270$$

GX; $|x\rangle |f(x)\rangle =$ $|0\rangle |4\rangle + |1\rangle |9\rangle + |2\rangle |2\rangle + |3\rangle |13\rangle + |4\rangle |12\rangle + |5\rangle |1\rangle + |6\rangle |4\rangle + |7\rangle |9\rangle + |8\rangle |2\rangle + |9\rangle |13\rangle + |10\rangle |12\rangle + |11\rangle |1\rangle + |11\rangle |12\rangle + |12\rangle + |12\rangle |12\rangle + |$ 112) 147 + 113/19> + 14/12> + (15/113) + (16/112) + (17/117+ Measure measure (13) collapse 7 Topay (TN 117 + TN 17) + TN 13) + ... Collapse 5 (\land | 3 > + \land | 9 > + \land | (5 > + \land) | 13 > TO REPRESENT THE COLLAPSED STATE?

1 (x) |f(x) = (10) 4 + 17 19 + 12 12 + 13 113 + 14 12 + 15 11 + 16 14 + 17 19 + 18 12 + 19 13 + 10 12 + 11 11 11 + 11127 147 + 1137197 + 147127 + (15) 1137 + (16) 1127 + (17) 117+ measure (13) bt Measure 7 Topay (TN 17) + 1 (7) + 1 (13) + ...) Collapse >pros (1/2) + 1/2) + 1/5) + 1/5) + 1/5) $b^{*}+mr$ f periods

$$\frac{1}{10} \left(\frac{10}{1} \right) \left(\frac{1}{1} \right) \left(\frac$$

Suppose Measure outcome
$$|f(b^*)\rangle$$
 $|V_3\rangle = \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}$

Factor out e 2 mig by IN $|V_{4}\rangle = \frac{1}{N} \frac{1}{y=0} \left(e^{2\pi i y} \frac{1}{y} \frac{1}{N} \right) \left(e^{2\pi i y} \frac{1}{y} \frac{1}{N} \right) \left(e^{2\pi i y} \frac{1}{N} \frac{1}{N} \right) \left($ $\frac{1}{N}e^{2\pi ib^*y/N} = \frac{N-1}{2\pi iy/N} \int_{M}^{M}$ Prob. of outcome y: (neometric Series: In our case: , t = N/r

$$\frac{\text{Case 1}}{\text{Q} \neq 1} \Leftrightarrow e^{2\pi i y r/N} \neq 1$$

$$\frac{\text{Case 1}}{\text{Q} \neq 1} \Leftrightarrow e^{2\pi i y r/N} \neq 1$$

$$= \frac{1 - e^{2\pi i y r/N}}{1 - e^{2\pi i y r/N}}$$

$$= 0$$

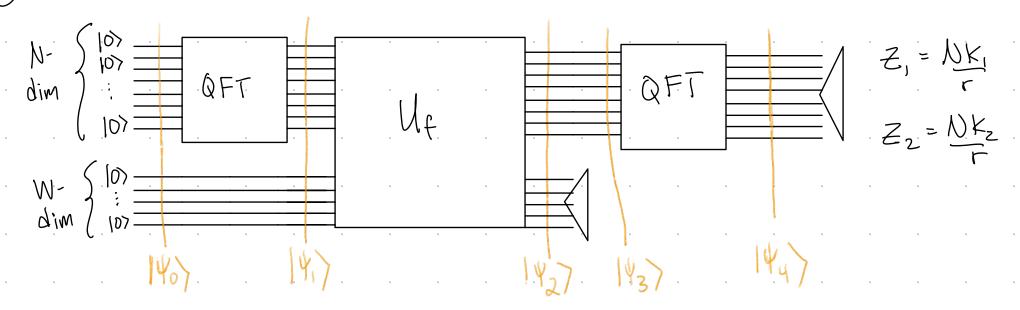
if
$$a = 1$$

at

if $a \neq 1$

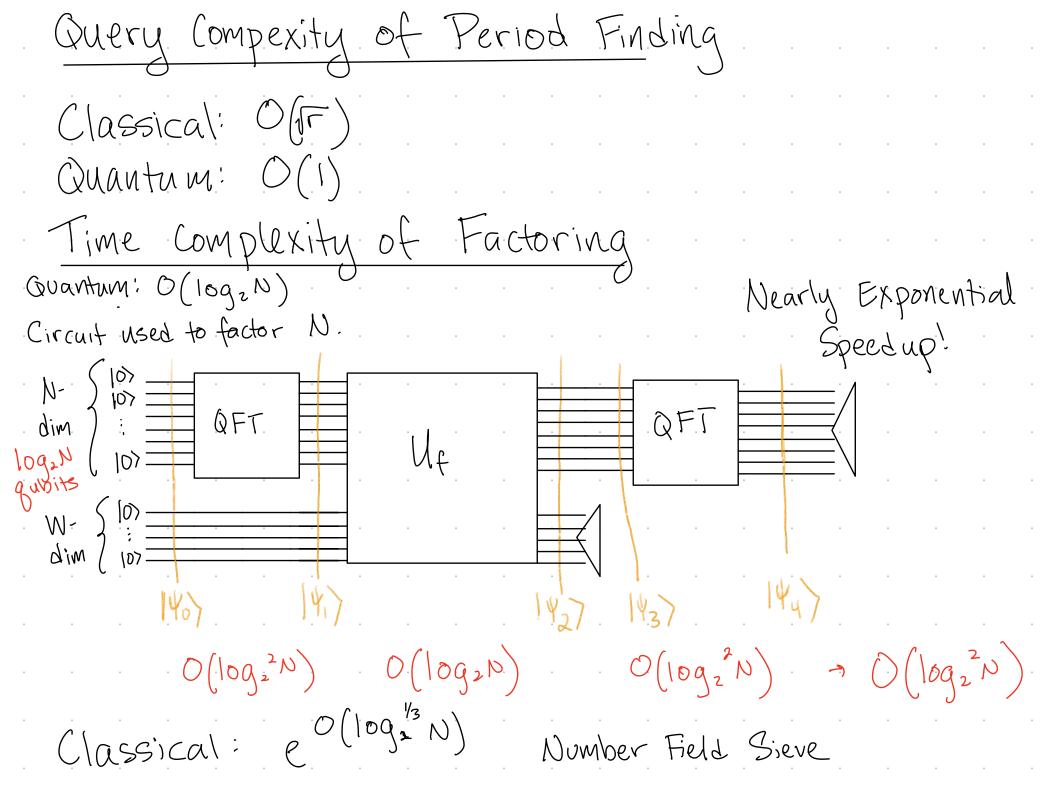
a

Case 2


 $a = 1 \Leftrightarrow e^{2\pi i y r/N} = 1$
 $\Rightarrow y = Nr \text{ for } k \in \mathbb{Z}$
 $\Rightarrow y = Nr \text{ for } k \in \mathbb{Z}$

M=0

The $2\pi i b^* y/N$ $= \left(e^{2\pi i y/N}\right)^m$ Prob. of outcome Plugging in: Case 1 1 1 P 2 27 1 1 b 4 y/N e arrib*y/N


Period Finding Algorithm (Shor's Algorithm)

(1) Run 2 times:

2) Continued Fractions
$$y_1 \rightarrow S_1 = K_1N$$
 $y_2 \rightarrow S_2 = K_2N$
(i) just je will be r (ii) juje are factors of

r > 1. c. m. (j) jz) => ~ Check f(0) = f(r)Successful with prob. $\geq 2/3$

Pesky Detail:

We looked at prob of: $y = \frac{KN}{r}$

But if N & N, y is a fraction... see pset.