ENTANGLEMENT + CHSH

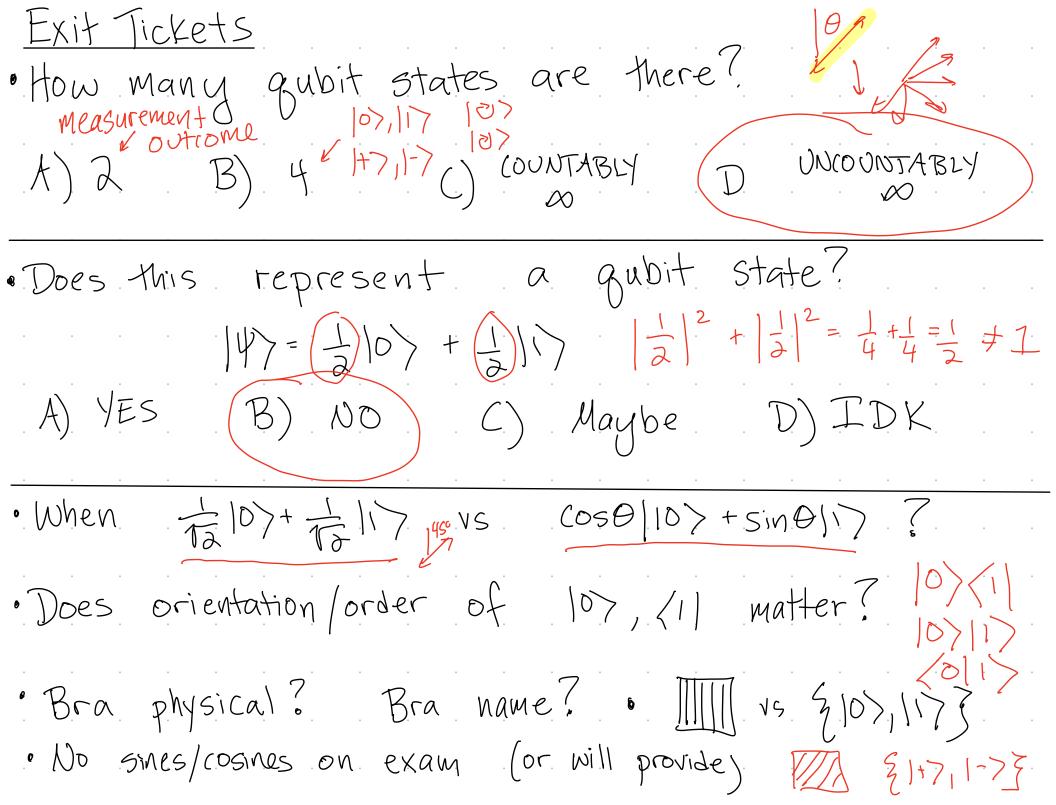
Goals

- · Describe entangled states + product states
- · Determine if a 2-gubit state is entangled · Describe why entanglement helps us win CHSH
- · Analyze 2-qubit systems

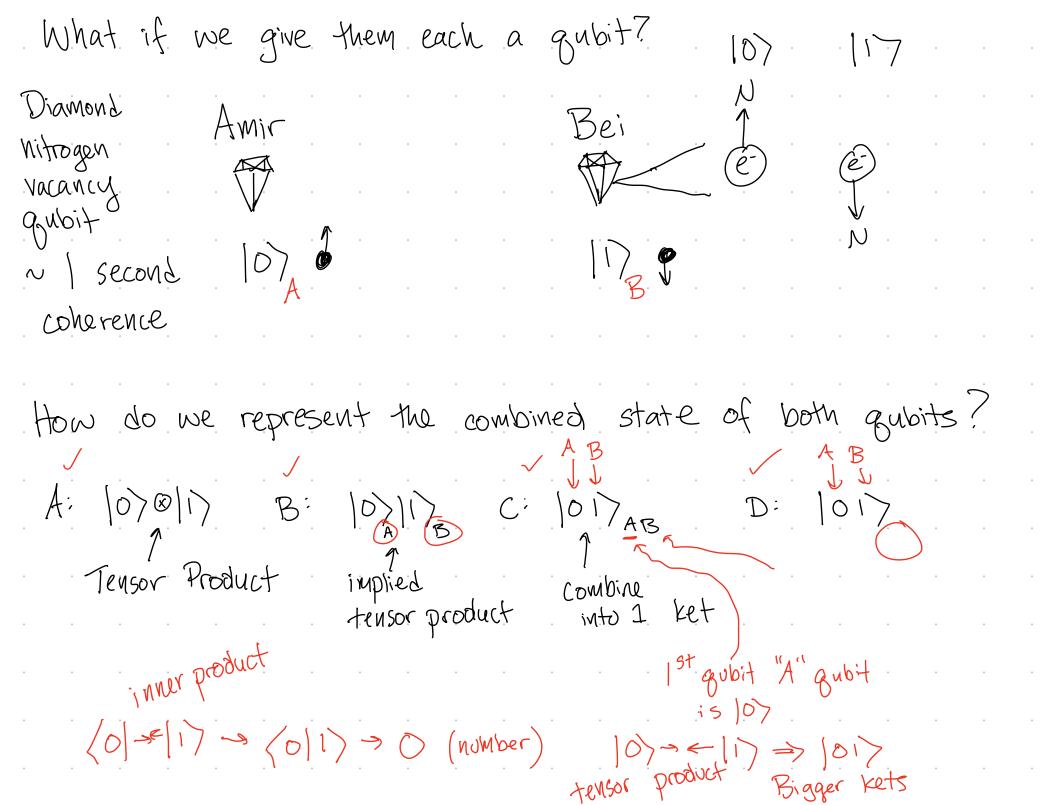
Announcements

- · In class exam Thursday QII, QIZ (15 min, no notes)
- · Review where to find notes on Canvas conv: meas in bra
- · OH Joday 12:30-1:30

$$|\langle \psi | \phi \rangle| = |\langle \phi | \psi \rangle|$$



CHSH Game (Clauser, Horne, Shin	nong, Holt) (Bell Inequality)
Time Referee	a,b,X,y E 20,13
Amir X Do X Bei	
a Referee	
Amir + Bei Wim:	
X'M MINNING CONGITION	PSet : show w/o quantum
00,01,10 $0=b$	best is 75% Win
$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	rate.



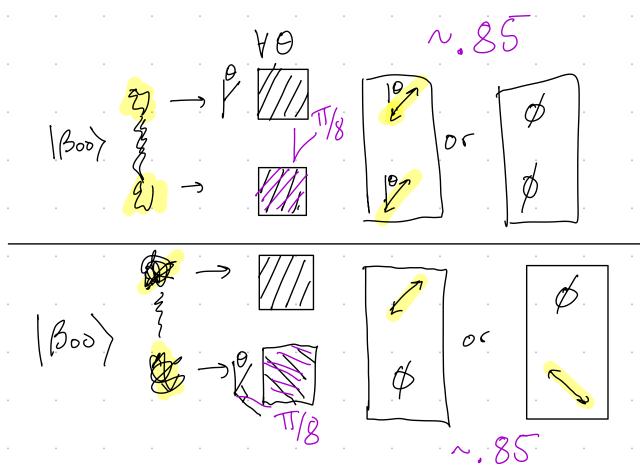
Gieneric 2 Qubit State:

$$|Y|_{AB} = a_{00}(00) + a_{01}(01) + a_{10}(10) + a_{11}(11)$$
 $|Q|_{AB} = |Q|_{00}(00) + a_{01}(01) + a_{10}(10) + a_{11}(11)$
 $|Q|_{AB} = |Q|_{00}(00) + a_{01}(01) + a_{10}(10) + a_{11}(11)$
 $|Q|_{AB} = |Q|_{00}(00) + a_{01}(01) + a_{10}(10) + a_{11}(11)$
 $|Q|_{AB} = |Q|_{00}(00) + a_{01}(01) + a_{10}(10) + a_{11}(11)$
 $|Q|_{AB} = |Q|_{00}(00) + a_{01}(01) + a_{10}(10) + a_{11}(11)$
 $|Q|_{AB} = |Q|_{00}(00) + a_{01}(01) + a_{10}(10) + a_{11}(11)$
 $|Q|_{AB} = |Q|_{00}(00) + a_{01}(01) + a_{01}(01) + a_{10}(10) + a_{11}(11)$
 $|Q|_{AB} = |Q|_{00}(00) + a_{01}(01) + a_{01}(01)$

$$Q_{01} = Q_{00} = \bigcirc$$

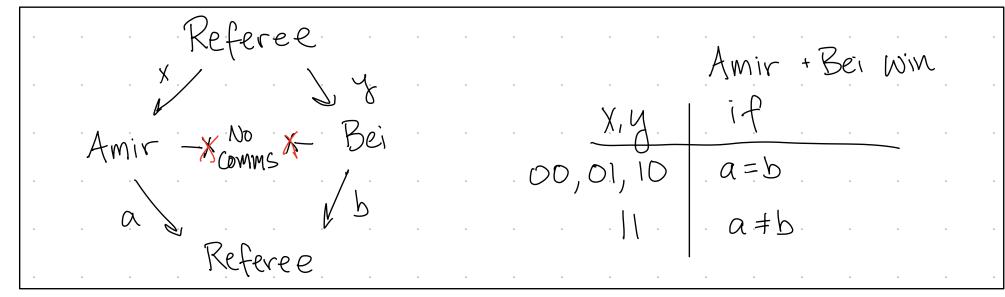
Taloo + Tall) AB is Entangled!

12/00/AB 12/11) AB is Entangled!

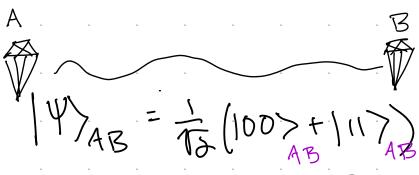


Fav. Media.

CHSH Game

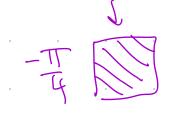


Strategy



Success Prob? Why?~85%

AWIC	Amir does	Bei	Bei does
Receives	measurement	Receives	Measurement
	IIII > € G=0		> [b=0
X = 0			$\frac{1}{\sqrt{1/8}} \approx 6 \cdot 6 = 1$
$\chi = 1$	7/1/2 a=0	1 = 1 (1	D = 0
	$\frac{1}{\pi/4} > 0 \qquad \alpha = 1$		-T/8 > \$ b=1



Quantum Entanglement

def:

A state 14/AB is a product state if 3 14,7,1427 St. 147=14,218

A state 14/2 is entangled if \$ 1417, 142 st. 142=141/2/3

There are valid 2-gubit states that can't be described as A system in a state + B system in a state.

Similar to classical correlation

$$Pr(00) = \frac{1}{2}$$

$$Pr(11) = \frac{1}{2}$$

Qubit A

$$|\Psi_{1}\rangle_{A} = a_{0}|0\rangle + a_{1}|1\rangle$$
 $|\Psi_{2}\rangle_{B} = b_{0}|0\rangle + b_{1}|1\rangle$
 $|\Psi_{2}\rangle_{B} = |\Psi_{1}\rangle_{A}|1\rangle$

Combined: $|\Psi_{AB}| = |\Psi_{1}\rangle_{A}|1\rangle_{A}|1\rangle_{B} = |\Psi_{1}\rangle_{A}|1\rangle_{B}$

$$= (a_{0}|0\rangle + a_{1}|1\rangle_{A}|1\rangle_{A}|1\rangle_{B} + a_{1}|1\rangle_{B}|1\rangle_{B}$$

$$= (a_{0}|0\rangle + a_{1}|1\rangle_{A}|1\rangle_{A}|1\rangle_{B} + a_{1}|1\rangle_{B}|1\rangle_{B}$$

$$= (a_{0}|0\rangle + a_{1}|1\rangle_{A}|1\rangle_{B} + a_{1}|1\rangle_{B}|1\rangle_{B}$$

$$= (a_{0}|0\rangle + a_{1}|1\rangle_{B}|1\rangle_{B} + a_{1}|1\rangle_{B}|1\rangle_{B}|1\rangle_{B}$$

$$= (a_{0}|0\rangle + a_{1}|1\rangle_{A}|1\rangle_{B}|1\rangle_{$$

Let (300) = = = (1007 + 1117) Prove (Boo) is entangled. Pf: Assume for contradiction (Boo) is not entangled. A state 14/AB is not entangled if 3/417, 142 St. 142/B

 $ad = 0 \Rightarrow a = 0 \text{ or } d = 0$

Of have 2-gubit state $|\Psi\rangle_{AB}$ and measure A gubit with $M_A = \frac{5}{2}|A_0\rangle$, $|A_1\rangle$ and B gubit with $M_B = \frac{5}{2}|B_0\rangle$, $|B_1\rangle$

Get outcome with prob. State collapses to

How many measurement outcomes are there?

A) 2 (Ma and MB) B) 4 ((20) (B0), (20) (B1),)

() Not enough information

of have 2-qubit state 14/AB and measure A gubit with $M_A = \frac{9}{2} |307, 12.79$ and B gubit with $M_B = \frac{9}{2} |307, 13.73$ Get outcome | X; > (Bj) with prob. | (X; | Bj|B|V) State collapses to |xix Bj>B Duppose Amir + Bei cannot communicate, but share 14) AB (UNKNOWN States). If Amir Measures $M_A = \frac{5}{2}|0\rangle, 11\rangle$ and Bei measures $M_B = \frac{5}{2}|+\rangle, 1-\rangle$ and they get outcome $|0\rangle, |+\rangle_B$, what does Amir know about the two qubits after the measurements if communication? A) Nothing
B) A is in 10>, B unknown C) A is in 107, B in 1+7

Example: 147/AB= 1007+ 1/2 117

MA = 21+7,1-73 MB= 21+7,1->3

 $|\langle \alpha_i | \langle \beta_j | \beta_i | \psi \rangle_{AB}|^2$

Probability of 1+7/1-78?

Practice: Start P53 # 4a