
QUANTUM CRYPTOGRAPHY

Learning Goals
(simple)
Predict outcome of quantum polarization measurements

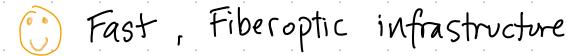
· Describe BB84 quantum crypto protocol and why it is secure

Announcements

Exit Tickets

Problem: How to share secret key?!

Current Solution: Public Key Cryptography (PSI)


Looming Problem: Eve with a quantum computer can crack

PKC

When.	ONLE	door	C\0	Ses,	anothe	کد ر	loor	opens	 ٠
		iblic Ke				•		Crypto	co1.
	. (cypto	0					٠	

To do guantum crypto, need guantum particles

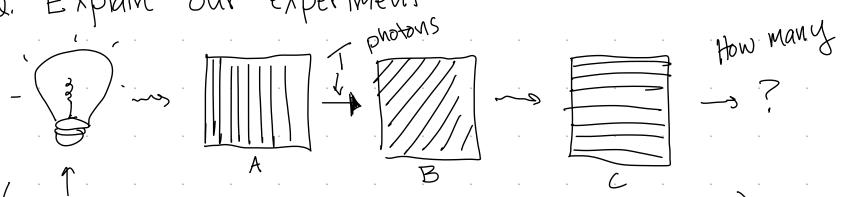
Photons => individual particles of light

Easily 10st

thard to create + detect (single photons)

Polarizer Demo: If insert diagonal filter between horizontal and vertical polarizers, how much light will come through?

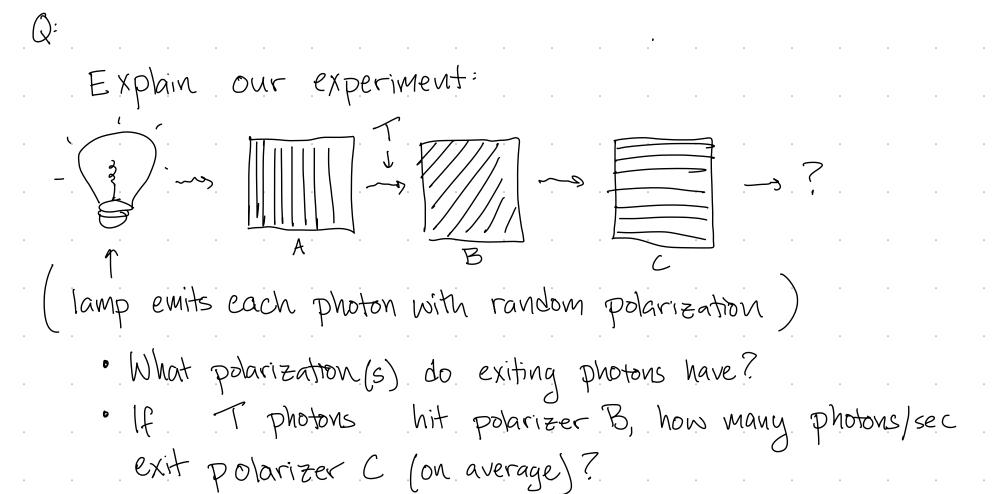
A. no diag. B. Single filter C. Same as D. More than Single filter Single filter


Thotons + Tolarizers Vertical polarized Filter with same polarization diagonally polarized Filter with perpendicular polarization Filter with 45° /2 polarization "collapse" horizontally polarized

*Behavior only depends on angle between photon polarization + polarizer

VExiting photons have same polarization as filter

Group	Mork
· · · · · · · · · · · · · · · · · · ·	


Q: Name, pronouns (optional), what kind of group problem solver are you?

(lamp emits each photon with random polarization).

- · What polarization(s) do exiting photons have?
- · If T photons hit polarizer B, how many photons exit polarizer C?

(Learning target QII -> Foundational)

Quantum Cryp	0+0, (BB84)			
Cl (basis bit	(info bit)	Photon	Gubit	state
vert) S O				
diag				

|. Alice chooses a, b & \foint \foint \foint \tandomly.

Measurem	ent bas	is bit) [M	lasur	emen	+	Meo	[ા] પડે પ્રા	eme	4	bac)) ,
	O 1 1				٠	٠	٠			٠	٠	
										٠	٠	
2. Bob												

3.

exi Round
123

1st Photon

2nd Photon

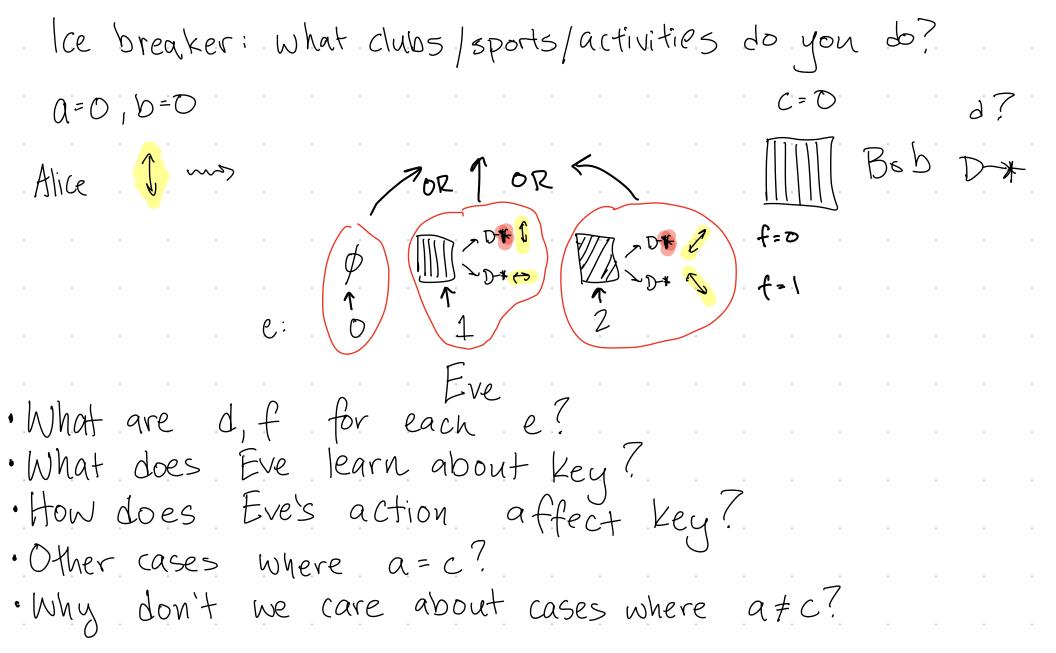
(ζ=

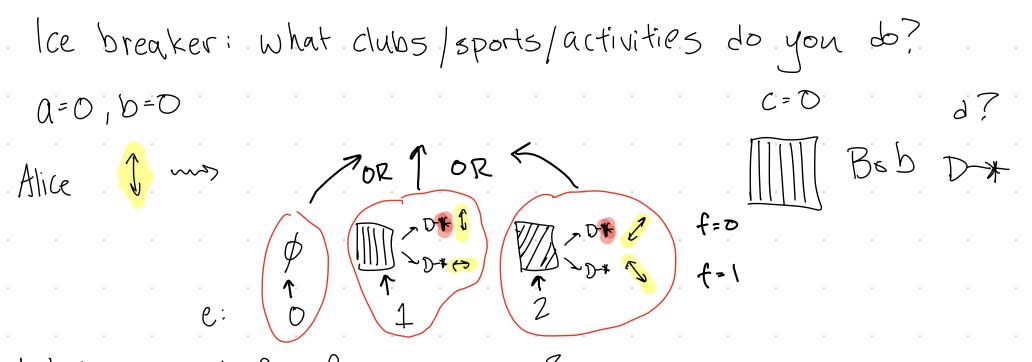
P=

_ =

4 =

Q: If a = Ci then


A) bi = di B) bi ≠di C) bi = di 1/2 the time


Q: If ai +ci then

A) $b_i = d_i$ B) $b_i \neq d_i$ C) $b_i' = d_i$ 1/2 the time

What about Eve?? (She knows protocol, just not particular Choices	3
Possible strategy for Eve:	•
Possible strategy for Eve: Chooses e & \{0,1,2\}^L at random	٠
Defection J	•
e= Jetection Jetection Jetection	•
2 lets photon pass undisturbed	٠
Records $f = \begin{cases} 0 & \text{detection} \\ 1 & \text{no detection} \\ 2 & \text{no measurement} \end{cases}$	
2 no measurement	•
# Has to make their choice before a, c announced.	

of

- · What are d, f for each e?
 - C = O →
 - . e = \ . :

- · Other cases where a = c?
- · Why don't we care about cases where a + c?

The more Eve interfers, the more b' \(\forall \) (b', \(\forall \) = remaining \\

+ the more Eve knows about b', \(\forall \).

Seems bad \(\tau \) actually ok.

6. A + B make public a random subset of bits of b', \(\forall \) to detect Eve

Remaining strings: b", d"

7. Alice	+ Bab error correct b", d"	(parity checks)	٠
	Outcome.		٠
			٠
			٠
			•
			٠
8. A + B	do privacy amplification		
	Outcome		٠
			•

As a group Review BB84 protocol

- "Generate questions
- · BB84 produces a secret key that is guaranteed secure from any evestropper. What is the quantum secret sauce?