Input: Description of an n-vertex graph via an $n \times n$ array w, such that $w[u,v]$ contains weight of edge (u,v). (Weight is infinity if no edge and 0 for $w[v,v]$.) Starting vertex s

Output: Array A containing…?

Goals:
- Design a dynamic programming algorithm for shortest path
- Array dimension?

Example:

Question?

A) $O(n)$ B) $O(n^2)$ C) $O(n^3)$ D) Read more about graph

Where are we using A containing w?
- for $i = 1$ to n
 - for $v = 1$ to n
 - if $i = v$
 - $A[i][v] = 0$
 - else
 - $A[i][v] = \min\{A[i-1][v], A[i][v-1], A[i-1][v-1]\}$

Use adjacency list
- $w[1][2], w[2][3], w[3][1]$
- $w[1][2], w[1][3], w[2][1], w[2][4], w[3][2], w[3][5], w[4][2], w[5][3]$
- $w[1][2], w[1][3], w[1][4], w[2][1], w[2][3], w[3][1], w[3][4], w[4][2], w[4][3], w[5][3], w[5][4]$

Example:

Problem:

A) $O(n)$ B) $O(n^2)$ C) $O(n^3)$ D) Read more about graph

Where are we using A containing w?
- for $i = 1$ to n
 - for $v = 1$ to n
 - if $i = v$
 - $A[i][v] = 0$
 - else
 - $A[i][v] = \min\{A[i-1][v], A[i][v-1], A[i-1][v-1]\}$

Use adjacency list
- $w[1][2], w[1][3], w[3][1]$
- $w[1][2], w[1][3], w[1][4], w[2][1], w[2][3], w[3][1], w[3][4], w[4][2], w[4][3], w[5][3], w[5][4]$

What is the runtime?

Why is this algorithm so fast?