QuickSort

- Input: Array A of unique integers
- Output: Sorted A

1. If |A| = 1: Return A
2. \(A[\text{pivot}] \) - chosen by a method
3. \(\text{QuickSort}(A[0...\text{pivot}]) \)
4. \(\text{QuickSort}(A[\text{pivot}...\text{last}]) \)

Effect of Partition:
- \(A_{\text{left}} \) and \(A_{\text{right}} \)
- Initial: \(\text{unsorted} \)
- After partitioning: \(\text{sorted} \)

- \(\text{Partition} \) (A, pivot)

Key Points
- Partition is doing most of the work in QuickSort
- Runtime of partition scales like the # of comparisons

Idea: To determine runtime of QuickSort, count comparisons over the whole array

Q: How many comparisons are done by partition on an array of size \(n \)?

A: B) \(O(n) \)

Effect of Partition:
- \(A_{\text{left}} \) vs. \(A_{\text{right}} \)
- \(n+1 \)

1. Suppose you get very lucky and pivot is always chosen to be median of A. Every time partition is called:
 - Create recurrence relation for runtime of QuickSort
 - Solve
2. Suppose you got very unlucky and pivot is always chosen to be minimum of A. Every time partition is called:
 - Create recurrence relation for runtime of QuickSort
 - Solve

1. \(T(n) = O(1), n = 1 \)
2. \(T(n) = 2T(\frac{n}{2}) + O(n) \)

\(T(n) = 2O(n\log n) = O(n\log n) \)

Lucky vs. Unlucky

\(O(n\log n) \) vs. \(O(n^2) \)

Which is likely?
Which is average?