Learning Goals · Describe Pand NP informally, and why these ideas are important · Define NP Announcements · Prove a problem is in NP Exit Tickets

Types of Problems									l mi	//ION	9011	ars									
٠	Fas		•	٠	٠	•		٠	٠	•	•	٠	•		Ha	ard	•	•	•	•	•
٠		<u>y</u>	•	٠	•	٠	٠	٠	Pu	122	les	٠	٠		.1		٠	٠	٠	٠	•
•	٠	٠	٠	٠	٠	¢	•	٠	•	٠	•	٠	•	•	٠	٠	٠	٠	٠	٠	٠
٠	•	٠	•	٠		٠		٠	•	٠	٠	٠	٠		٠	٠	٠	٠	•	•	٠
•	٠										٠		٠						•	٠	•
•	٠	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	٠
•	٠	•	٠	•		•		•	•	•	•	•	•		•	•	•	•			٠
•	٠	٠	٠	٠	•	•		٠	•	٠		٠			٠	•	٠	•			•
٠	•	٠	٠	٠	۰	٠		٠	٠	٠		٠		•	٠	٠	٠	٠		•	•
•	٠	٠	٠	٠		٠		٠	٠	٠		٠			٠	•	٠	٠		•	
•	•												•						•	•	
٠	۰	•	•	•		•	ŀ	•	•	•	0	•	0	• 1	•	•	•	•	٠	٠	•
٠	٠	•	•	•	•	•	٠	•	•	•	٠	•	٠	•	•	•	•	•	٠	٠	٠
٠	•	•	•	•		•	•	•	•	•	٠	•	•	•	•	•	•		•	•	•
			•	٠				•	٠			•	٠	٠	•	٠	•	•	٠	•	٠

Can mathematically characterize Easy / Puzzle

P and NP	•	•	•	•	

- P
- Informal:
- NP
- Informal.

- Polynomial Time

All Problems

.

Which picture is correct?

.

NP problems are YES-NO: example of NP problem: 35AT 3SAT

IS 3SATENP?

.

•		•	·	×	,	·	,	,	·	*	,	,	×		•	·			·	•	Ť
Questions			AS	-10	A	sk	Yourself to Prove								εĽ)7				•	٠
	•			٠	•	o		•	o			٠	٠	•	o		•	•	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
	٠	o	٠	٠	•	•	•	٠	o	٠	٠	٠	٠	o	o	•	o	o	٠	٠	٠
	•	•				•	•	•	•					•	•		•	•	•		•
	•							•					•								
•		٠	•		٠			•		•					•	•				•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
X	•	•		•	٠	•	•	٠	•					•	•		•	•	•	•	
٠	٠	٠	•	٠	٠	•	•	٠	•	٠	٠	٠	٠	•	•	•	•	•	٠	•	٠

Proof that 35ATENP																			
• Let	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
Î																			
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
3	•	•		•		•	•	•	•	•	•	•	•	•		•	•	•	•
And	outpu	its	•	•	٠	٠	•	٠	٠	•	٠	•	•	•	٠	•	•	٠	•
- M(X,y) ru	MS	ίn	•	•	٠	•	•	٠	•	٠	•	•	•	•	•	•	٠	
	•	•		•	•	٠	•	•	٠	٠	٠	•	•	•	٠	•	•	٠	٠
	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	0	٠	•	•	٠	٠
(3)			•	•	•	•	•		٠	•	٠			•	٠	•	•	٠	٠
	•	•	•	•				•	•	•	•	٠	٠	٠	•	٠		•	•
. 6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•			•			•	•	0				٠			٠	
•		٠	٠	٠	•	٠	•	٠	٠	•	٠	٠	٠	٠	٠	٠	•	٠	٠

•

Formal (ish) Definition of NP A problem is in NP If 0

Group Work Hamiltonian Path Problem: X is a YES instance iff X describes adjacency matrix of a graph G with vertices s,t s.t. there is a path from s to t that goes through each vertex exactly once. X= SUVE X= SUVE 50110D SONI x ___ k __ (| __ x __ (k ___ k __ FIDI II IID FUDIO YES instance No instance Show: Prove: Hamiltonian Path ENP · Describe M(X,y) · Analyze runtime of M. in terms 07 Is Knapsack in P? NP? · If yes, 3 y: M(x,y)=1 • If no, Yy: M(Xiy)=D

Group Work Hamiltonian Path Problem: Given an adjacency matrix for a graph G=(V,E) and s, t eV, is there a path from s to t that goes through each vertex once.

H	am	Pa	th	ελ	90	•	٠	٠	•		٠	•	٠	•		٠	•	•	•		٠
• /	$\Lambda(\chi$,4);		٠	٠	•			٠	٠	٠	•		٠	٠	·		٠	ø	ø	٠
. (D		٠	•	٠		٠	٠	•		•	٠	٠	٠	٠	٠	٠	•	•	•	٠
	Ð	٠		٠	•						٠				•			•			•
	Ì.	٠	٠	•	٠		٠	٠	ø	٠	•	٠	٠	٠	٠	٠	٠	ø	٥	ø	٠
	Ď	٠	•	۰		•	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	•	•	•	٠
	f passes all checks, return 1,									c.15	e., (٠				•	•		
o R	(UNT	jMe:	٠			٠	٠	٠	٥	٠		٠	٠	٠	٠	٠	٠	ø	٠	ø	٠
	>	٠	•	•	٠	•	٠	•	•		•	•	٠	•	٠	•	•	•	•	•	٠
	Ď	•	٠					•	•			•		٠	٠	•	•	•	٠	٠	•
		٠	•	•	٠	٠	٠	•	•		٠	٠	٠	٠	٠	٠	٠	•	•	•	٠
(4		٠								٠					٠			•			
٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	۰	٠	٠	٠	ø	٠	ø	٠
			•			٠	•	•	•			٠	•	•	٠	•	•	•	•	•	٠
•	•	٠	•	٠		•		•	٠	•	٠	•		٠	٠	•	•	•	٠	٠	•

Knapsack: Runtime is O(n.W) · N = number of items ·W= size of Knapsack What is imput size? (assume max value is \$100). A) $O(\log(n)W)$ B) O(log(n) + log(w))C) O(log(n) + W) \mathcal{D}) $\mathcal{O}(n \log W)$ ex: