Closest Points Problem P = (1, 2) (2, 6) (6, 3)Input: Array of 2-D points: Assume: 1 2 3 4 5 6 X X, y coordinats are unique for each pt Output: Distance b/t 2 closest points $\rightarrow d(p_{1}, p_{3}) = \sqrt{(X_{1} - X_{1})^{2} + (y_{1} - y_{3})^{2}}$ (1,2)(1,6) - air traffic control Applications: - robotics - stereo imaging (1,2)(2,1)Algorithms + Ethics Algorithm is essentially a mathematical object. But once it gets implemented for a particular task, has ethical implications

Ethical Matrix	(O'Nei) + Gu	unn Jack Liwh	ere travel + why?)
(Air Traffic Control Improvement	Harm?' Benefit?	Choice to use? Are users informe enough to underst meaningfully take responsibility for u	d Unfair treatment and of different groups? Set. T
Stakeholders	Well-Being	Autonomy	Justice
Airplane Passengers	Safety, Cheaper (?) Environment	A - transport Zoom	Equal access (rich /poor) (geographic)
Airline Cos	\$, Safer	No choice (International)	Difference by country, by region
Employees, ATC	Automation -> Nojob Effectency, lesis stress,	No choice safer	Who is to blame if error
Civilians, Bystanders	Noise pollution, Make war easier, environment, hel	No choice, opt out (vote) economy/tourists	(Un) Equal impact on enviroment, Near airport more affected

Army	 •	•	•	•	•	•	•	•				•
People of Olor		•	•		•	•	•	•	•			
Non-Dinary Folks	•	•		•							•	

Ethical Matrix does not tell you what to do. Tool for thinking about consequences, both + and -. → How can I mitigate negatives? -> Modify > Aid

Closest Points 2D Before designing a sophisticated algorithm, try to benchmark - Want better than "Brute Force" - Can't do better than ID Brute Force (check every pair) • $Min \ll 0$ O(1)for $i \in [1 \text{ to } N-1] O(n)$ $\int O(n^2)$ [for $j \in i+1$ to N O(n) O(n) $\int O(n^2)$ [$i \in J$ dist(p_{i}, p_{j}) < min, then min $\in J$ ist(p_{i}, p_{j}) $\left(O(n^2) \right)$ return min · Sort (P) O(nlogn) Closest Pts ID 5902017 0 5 9 ·Sort(P) O(nlogn) 1051911720 • Min $\ll \infty$ O(1)lif dist (pi, pin) LMin, then Mine dist(pi, pin) O(1) = JO(n) (O(nlogn)) · for i=1 to N-1: O(n) · return min Ethical Matrix: Race? Include the right stakeholders/how many? Weakness? When to use ? What to do after fill out ?

(Divide + Conquer 2D Closest Pts) CloPts(P) Sort by X Base Case : Later Divide (1,5) (2,2) (4,0) (0,20) (12,3) (20,6)(È) . Midline: 7 ۲ . R L7. 1 Conquer : $S \leftarrow Clopts(L)$

 $S_{2} \leftarrow (loPts(R))$ $S \leftarrow Min(S_{1}, S_{2})$

Combine

Let	s t	linte	- Ĉ	ode	· 'Av	<i>Hi</i> is	•••	•			•	•	•	•	٠	•	•	٠	٠
• •				•	L		R		•	•	٠	٠	٠	٠	٠	٠	•	٠	•
• •		2	;=J			• •	٠				•	•	٠	•	٠	٠	٠	•	•
• •	• •		•	•	•	•	10			•						•	•		٠
•		•	•	٠		, C			•	٠	•	•	•	•		٠	٠	•	٠
•		٠	٠	٠						٠					٠	٠	٠		٠
•								$S_2 = 0$	۱.										•
•			•	•															٠
•	• •	•	•	٠	٠	•	٠	٠	٠		٠	٠	0	٠	٠	٠	۰	۰	•
•	• •	•	•	٠	•	•	٠	٠	٠		٠	٠	۰	٠	٠	٠	•	٠	٠
•			•	•	٠		•			•									•
• •	• •	•	•	•	•	•	٠	٠	٠		٠	٠	٠	٠	٠	٠	•	٠	٠
•		•	•	•	•		٠		•								•		•

Lemma: If pz in R has difference in x-coord. of more than r=S from midline, then for any point $p_1 \in L$, $d(p_1, p_2) > r = S$ (Basic ideas, but need more English in real proof) Sketch : Froot $d(P_1, P_2) = \int (\chi_1 - \chi_2)^2 + (y_1 - y_2)^2$ Midline (X1-X2)2 = (diff in X-coord from X2 to midlinet midline to X,)2 $(y_1 - y_2)^2 > 0$ $\sqrt{(\chi_1 - \chi_2)^2 + (\gamma_1 - \gamma_2)^2} > \sqrt{r^2}$ d(PIIP2) > r

.

We want to check points in this region, Looks like a line! Combine Step Vs < y-sorted list of pls in P within & of midline 25 For p'E Ys · Check distance from p to Next 2+ pts Midline S ·Save if smallest found Return smallest distance found What goes here?

Lemma: Only need to look at next 7 pts in Vs Pf: Imagine dividing region w/in S of midline into fx 5 squares starting at current pt (g). Each square can contain at most one point. To see this, for SIZ S midline S -> Contradiction, suppose there are 2 pts in à square. The pis have largest distance . When on opp. corners. In that case, their distance MS. $\int \left(\left(\frac{s}{z}\right)^2 + \left(\frac{s}{z}\right)^2 \right)^2 = \sqrt{\frac{s^2}{4}} + \frac{s^2}{4} + \frac{s^2}{4} = \sqrt{\frac{s^2}{4}} + \frac{s^2}{4} = \sqrt{\frac{s^2}{4}} + \frac{s^2}{4} = \sqrt{\frac{s^2}{4}} + \frac{s^2}{4} = \sqrt{\frac{s^2}{4}} + \frac{s^2}{4} + \frac{s^2}{4} = \sqrt{\frac{s^2}{4}} + \frac{s^2}{4} = \sqrt{\frac{s^2}{4} + \frac{s^2}{4} + \frac{s^2}{4} = \sqrt{\frac{s^2}{4}} + \frac{s^2}{4$ Each box is in L or R, so any 2 pts m a box must have distance ZS, a contradiction

At least S from 8, b/c diff in midline 3/2 ° y-coordinate is at least S. 1 So only 1st 2 rows are relevant 2 5 There are at most 7 pts other than g in 1st 2 rows, b/c only S DOX.

.

.

(Divide + Conquer 2D Closest Pts) (loPts(P)) Base Case : later Divide : Sort by X (1,5)(2,2)(4,0)(10,20)(12,3)(20,6). *1*2 by midline Divide into L, R Lonquer : $S \leftarrow CloP+(L)$ Si CloPt (R) Se Min (S., Sz) Combine. S of midline, sorted by y-coordinate Y epts w/in for pie Ys for j < i+1 to i+7: | if d(Pi, Pj) < S, then $S < d(P_i, P_j)$ S return

Base Case What size set of pts should trigger base case $D) \leq 3$ $C_{1}) = 2$ B) 41 (A) \mathcal{D} 6 6 Ø

.

.

<u>CloPts(P)</u> (Divide + Conquer 2D Closest Pts) O(1) Base Case : If |PI = 3, then do brute force Sort by X O(nlogn) Divide : (1,5)(2,2)(4,0)(1020)(12,3)(20,6)by midline N=|P| Divide into L, R Lonquer: $S_{1} = CloP+(L) \in T(\frac{n}{a})$ $T(n) = \begin{cases} O(1) & \text{if } n \neq 3 \\ 2T(\frac{n}{2}) + O(n \log n) & \text{else} \end{cases}$ $S_{z} = CloPt(R) VT(\frac{m}{2})$ $S = Min(S_1, S_2) O(1)$ a=2 b=2 d=1.01 $a? b^{2}$ Combine Ys epts w/in S of midline, sorted by y-coordinate O(nlogn) for pieys. O(n) for j < i+1 to i+7: O(1) if d(Pi,Pj) < S, then S < d(Pi,Pj) O(i) return S O(1)

Problem: Sorting at each recursive step takes too long. $\frac{PreSort(P)}{X \in P \text{ sorted by } X}$ $ClopPts(X^{*}, Y^{*})$ 1 If |x| =3, do Brute Force O(1) 2. Divide into XL, YL, XR, YR O(n) Y e P sorted by y return X, Y 3. S= Min ZOPts (XL, YL); CloPts (XR, YR) 27(学) 4 Create Vs O(n) O(nlogn) S. For pie Ys: O(n) For jeil to it 7 O(1) I if dist (P., Pj) LS, Se dist (P., Pj) 6 Return S. $T(n) = \begin{cases} O(1) & \text{if } n \leq 3 \\ \partial T(\frac{n}{2}) + O(n) & \text{else} \end{cases}$ $U \left(\bigcup_{i \in \mathcal{N}} (\bigcup_{i \in \mathcalN} (\bigcup_{i \in$ $O(n\log n) = O(n\log n)$

Dividing Arrays Efficiently

.

Step 2. (20,6)(10, 20)(12,3) (1,5)(12,3) (20,6) (<mark>4</mark>,0) (2, 2) | (4, 0)(10 20) 2,2) (1,5)(12, 3)(2,2)(20,6 (1,5)(10,24) [(10, 20)][12, 3)|(4,0)|(20,6) (4,0)(1)(2,2) χL XR YR YL า(ท่ O(n)7 ± 4 midline is 7 -7/ 3 to from Want X Ц Stepy Ξ (12,3) (1,5) (20,6)(10;20)(2,2) (<mark>4</mark>,0) × (4,0)(10,20)

· Where did we use our assumption that xing points are unique? · You can do Prg. Assign. 1!