Learning Goals · Reduce one problem to another / • Define Polynomial Time Reduction / · Describe why reductions are important ~ Announcements · No office hours Friday (Fall break) · Quiz, RD due Mon, PS due Thurs (Fall break) Exit Tickets Why "dynamic programming"? Which strategy when? 22 vertices? to work backwards?? Always need Other graphs? Other non-graph problems? Tree MWIS? While loop? Kecursion in dynamic prog? Store vertices?

(latitude, longitude) Cell Tower Scheduling Input: Array P s.E. P[i] is the location of ith cell tower. Array D s.t. D[i] is the number of data packets to send from it tower. Output: Set of towers, to broadcast in next thme step. • If 2 towers with 2 miles of each other broadcast at same time -> interprence · Maximize the number of Lata packets that are in queues that reduce in length.

Reduction Cell Tower Problem N towers Output Input MWIS (general graph) CONVERSION -> (>1) Θ '→W⁻ $O(2^{n'})$ D(n)What should input/output conversion functions be? I.C.(P,D)O(n)D.C.(S) $\mathcal{O}(n^2)$ V € £ 1, 2, 3, M ₹ 1 ·TES For $i \in [n]$: $w(i) \in D[i]$ For each pair $i, j \in [n]$: [If $d(t_i, t_j) \leq 2$, Add $\Xi_{i,j}$ to EMultiple groups of customers based on how alg treats groups differently · Return T · Return (GI=(VIE), W) 2. Ethical Matrix (Stakeholders, Well-Being, Autonomy, Justice) 3. Runtime of conversions in terms of n?

Ethical Matrix	(O'Neil + Gu	unu y a a	
cell Tower	Harm? Benefit?	Choice to use? Are users informed enough to understa meaningfully take responsibility for us	d Unfair treatment and of different groups? e7. Access to Taile 1410?
Stakeholders	Well-Being	Autonomy	Justice
	· Happy customers		Budget,
Company	potum Competition onvestment b/t carries	· · · · · ·	Establishe companies, Monopoly?
Rural Users	small queves not	e ed X e e	Lacking tech Infrastructure
Urbay Vsers	· · · large queves	n n X n n	Access to carriers
	I		

•	•	•	•	•		٠	•	٠	•	•	•	•	•	٠	•	•	٠	•	•	•	•
٠	•	•	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	•	0	•	٠	٠	٠	٠	٠
٠	٠	٠	٠	÷		٠	٠	٠	٠	٠	٠	٠	÷	٠	÷	٠	٠	÷	÷	٠	٠
٠	٠	٠	٠	٠		•	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠
			1				5	,	5		1						,		1	1	
•	٠	٠	•	٠		٠	٠	٠	٠	•	•	•	٠	٠	•	•	٠	٠	•	٠	•
•	•		•	•		•	•	٠	•	•	٠	•	•		e.		•	•	•	•	•
•	•		•	•		•	•	٠	•	•	٠	•	•		•		•	•	•	•	٠
•	•		•	•		•	•	•	•	•	•	•			•		•		•	•	٠
•	٠	•	٠	•	•		•	•	٠	•	٠	٠	•			•	•	•	•	٠	•
•	٠	٠	۰	•	٠	•	٠	۰	٠	۰	٠	۰	•	٠	•	٠	۰	•	•	٠	٠
•	٠	٠	٠	•	٠	•	•	٠	٠	٠	٠	٠	•	•	•	•	٠	•	•	٠	٠
•	٠	•	٠	•	•	•	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	•	•	٠	•
•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	•	•	٠	•
•	٠	٠	٠	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	٠	٠	•	•	٠	٠

Polynomial-Time Reduction INPULLONNESION Runtime 15 $O(N^d)$ for a f · · Constant J. $e_X: O(n), O(r)$ Not allowed: Oft det: If you can solve problem P using a solver for problem Q and f runs in polynomial time, then P is polynomial-time reducible to Q, denoted P=pQ · Q is so powerful, it can not only solve Q, it can also solve P · Runtime of P is less than that of Q (up to polynomial factors) Harder Harder (Smaller box is harder, More powerful)

Generic Reduction

. . . .

Why think about reductions?

· Practical : If have an alg for Q, can use it for P

· (onceptual: Gives us a way to compare the difficulty of problems, to compare resources needed to solve problems.