
| Learning Goals<br>1. Describe Pand | NP in | nformally, | and why | These    | ideas | are | 'impo | ,rtant |
|------------------------------------|-------|------------|---------|----------|-------|-----|-------|--------|
| · Define NP<br>· Prove a problem   |       |            |         | 10UN QML |       |     |       |        |
| Exit Tickets                       |       |            |         |          |       |     |       |        |

| million dollars! Types of Hard Easy Puzzles (Polynomial time) Chess: What is the Sudoku ( no Known next best move · Search Cross word ) polynomial · Sort Halting Problem · Matrix Mult. Factoring large · Find closest pair NUMber S.  $N \stackrel{?}{=} a \times b$ bume i

| Can mathematically characterize | Easi    | y / P | uzzle      | •            | ٠            | ٠   |          | •   |
|---------------------------------|---------|-------|------------|--------------|--------------|-----|----------|-----|
|                                 |         | . /   |            | •            |              |     | •        |     |
|                                 |         |       |            | •            |              | •   |          | ٠   |
| Plandapp                        |         |       |            |              |              |     | •        | ٠   |
| P (Polynomial Time)             |         |       |            | •            |              | •   |          | •   |
| Informal: A problem is in P if  | ; -i+   | Cau V | pe 501     | ved          | <b>`</b> (1) | Pol | ynoi     | Mia |
| time.                           |         |       |            |              |              | •   |          | ٠   |
| NP (Non-deterministic polynomi  | rial to | me)   |            | ٠            |              | •   |          | ٠   |
| Informal: A problem is in NP    | > if    | a Po  | ssible     | SD           | oitul        | M ( | Can      |     |
| be checked / verified           |         |       |            |              |              | •   |          | •   |
|                                 |         |       |            |              |              | •   | •        | •   |
| Polynomial Time                 |         |       |            | •            |              | •   | •        |     |
| - 10(nc) time for a co          | >ustan  | t c', | where      | , <b>/</b> / | (==          | 于   | 06       |     |
| bits used to describe           |         |       |            |              | •            | •   | •        | •   |
|                                 | )       | •     | •          | 2 ;<br>c     | •            |     | •        | •   |
| 10 52 101                       |         |       | large<br>V | $\int = 1$   | W/00         | 721 | <u> </u> | ٠   |



name of problem  $Q(x) = \begin{cases} 1 & \text{Yes} \\ 0 & \text{No} \end{cases}$ NP problems are YES-No: example of NP problem: 3SAT A 3SAT A 3SAT 35AT: X is a Yes instance if it describes a Boolean formula that is an AND of ORS, reach clause has at most 3 literals and there is a satisfying assignment.

Life, T, Z, Fretc. s.t. X is

True Instance: 2 X = (Z, VZ, V7Z3) / (7Z, V7Z3 V Z4) / (Z, VZ4) / Clause  $Z_1Z_2...Z_n \Rightarrow variables$  Otherwise X is a No instance  $Z_1,7Z_1,Z_2,7Z_2... \rightleftharpoons$  literals

15 3SATENP?

Questions to Ask Yourself to Prove QENP (D) What info would convince me that x is a Yes for Q  $(Z_1=T, Z_2=F, Z_3=F_1...) < W$ 

2) If given info from 1) now could I guickly check if x is a yes for Q

\* You do not have to find y

\* Only need to verify y is a solution

| F | roof that 35ATENP ) algorithm mstance potential solution |
|---|----------------------------------------------------------|
| ١ | Let M 1 x us be the algorithm that                       |
|   | 1) Check that x is an AND of GR with at most 3 literals  |
|   | in each clause                                           |
|   | 2) Check y is an assignment of T, F to each variable     |
|   | 3) Check that assignment in y makes x true               |
|   | And outputs I if all checks pass, and O otherwise        |
| • | M/VIII FUNC IN                                           |
|   | O Read through X. Size of X is O(IXI) - Time O(IXI)      |
|   |                                                          |
|   | · · · · · · · · · · · · · · · · · · ·                    |