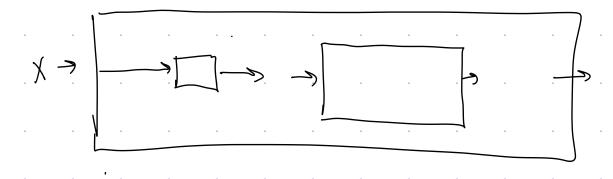
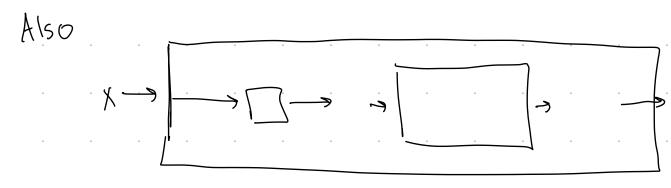
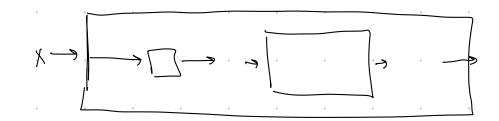
Learning Goals · Define NP-complete and NP-Hard Problems and describe their IMPORTANCE


- · Describe parts of NP-complete Proof
- · Practice proving a problem is NP complete (Hamiltonian Path)


Types of Problems	
Easy	
(Polynomial time)	Crossword Crossword
· Search	Sudoku
· Sort	Delivery of £100 miles
· Multiplication	Protein Folding
· Closest Points	Factor larger numbers
· Greedy Scheduling	
· MW/S on a line	Primality Testing
· Matrix Mult.	

Question: How do we identify the hardest problems in NP?


- → Empirical:
- Analytical:

EX:

Also

NP P

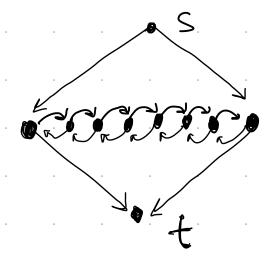
1 1 . 1 .	•	•	•	•	•			٠	٠	٠			•		•		
Fact 1:	٠	•	•	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	•	
1 0 MM M 1:	٠	٠	•			•		•	٠	•				•		•	
Lemma 1:	•	٠	•	٠	•	٠	•	•	•	٠	•	•	•	•	٠		٠
	٠	•	٠	•	٠	•	•	٠	•	٠	•	•	•	•	•	•	٠
√	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	•	٠

Morem:

Formal Definition of Polytime Reduction

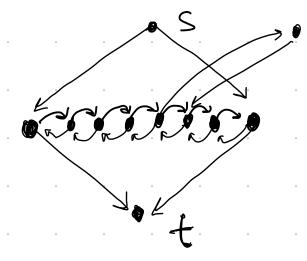
def:

0

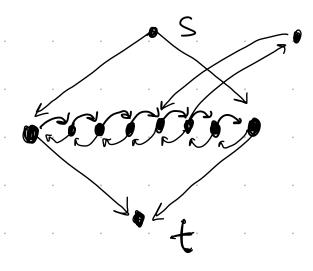

(

Lemma: 3SAT = p Ham-Path

Strategy: 1.


Ζ,

How many Hamiltonian Paths are in this graph?



A. 2 B. 3 C. 49 D. $\binom{2}{2}$

How many Hamiltonian Paths are in this graph?

A 0 B. 1 C. 2 D. 3

$$X = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{Z_3}) \wedge (7Z, \sqrt{7}Z_3)$$

$$Z_1 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

$$Z_2 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

$$Z_3 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

$$Z_3 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

$$Z_3 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

$$Z_3 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

$$Z_3 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

$$Z_3 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

$$Z_3 = (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3) \wedge (Z, \sqrt{7}Z_3)$$

Group Work

1. Encode (Zi) / (7Z, VZ) / (7Z, VZ) into Ham-Path

Instance. Show get a No Instance.

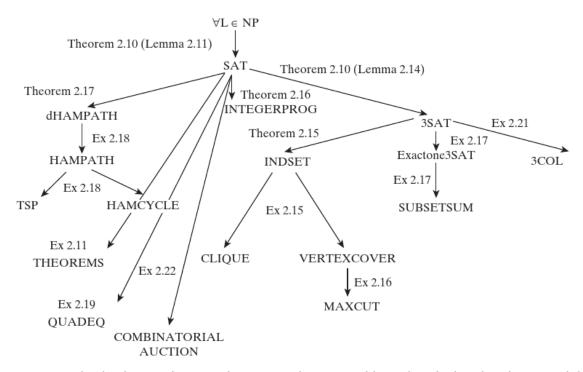
2. Runtime of f_{35AT} + HAM-PATIL ? (Create adj matrix for graph)

3. 3SAT(X) = Yes iff HAMPATH (f3SAT-HAMPATH (X)) = Yes

2.		٠		•			٠	٠	٠	٠		•		٠	٠	٠	٠			٠	•
•		•					٠	•	•	•		•	٠	•	٠	٠	•			•	
٠		٠	•	٠	•	٠	٠		٠	٠		٠	٠	٠	٠	٠		•		٠	•
•		•					•	•	٠	٠		٠	٠	٠	٠	•	•		•	٠	•
٠	•																			٠	
٠																				٠	
٠																					
٠																				٠	
									•	•		•	٠	•	٠					•	
٠		٠					٠	٠	•	٠		•		٠		٠	٠			•	•
																					•
•							•	•	٠	•		٠	٠	•	٠	•	•		•	•	•
•		•		•		•	•	•	•	•		٠	٠	•	•	٠	•		•	•	•
٠		•		•			•	٠	٠	٠		٠	٠	٠	٠	٠	٠		•	•	•
•	٠	•	٠	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•

3,

3SAT(X) = Yes iff HAMPATH (f3SAT-HAMPATH (X)) = Yes


 \rightarrow

Lemma 1: If QENP-Hard and QER then RENP-Hard.

2.4. The Web of Reductions

51

Figure 2.4. Web of reductions between the **NP**-completeness problems described in this chapter and the exercises. Thousands more are known.

(Arora + Boaz, Computational Complexity)