<u>Learning Goals</u>
· Define NP-complete and NP-Hard Problems and describe their
importance
· Describe parts of NP-Complete Proof
· Practice proving a problem is NP complete (Hamiltonian

Exit Tickets

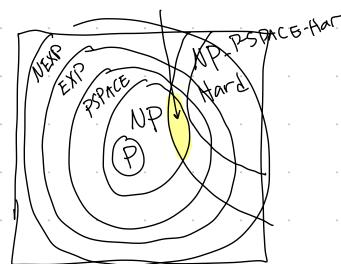
- · Distributed Bellman-Ford
- · Def: NP-Hard? vs. Def NP? us. Def NP-Complete

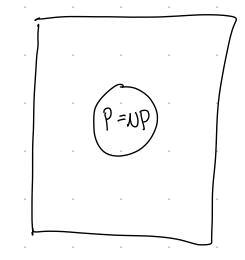
· NPCP?

- · NP-Hard hierarchy
- "Better" polynomial time reductions

 SAT competitions

 Direction of reduction


Review


NP

NP-Hard

NP-Complete

NP-complete - 3-SAT

_	Types of	Problem
	Easy	
	(Polynomial	time)
,	Search .	
•	Sact	

- · Sort · Multiplication
- · Closest Points
- · Greedy Scheduling
- · MW/S · on a · line
- · Matrix Mult.

Puzzles/NP Crossword

Sudoku

Delivery of £100 miles

Protein Folding

Factor larger numbers

Primality Testing

Question: How do we identify the hardest problems in NP?

- > Empirical: Keep trying to find alg... but can't... HARD
- -> Analytical: Prove a problem is hard. Possible!

NP-Hard def: A problem QENP-Hard if for every problem RENP, REPQ. Ex: Halting Problem E NP-Hard Ves, No Yes, No runs in poly program MWIS (general graph /YES-NO) Half-Prob

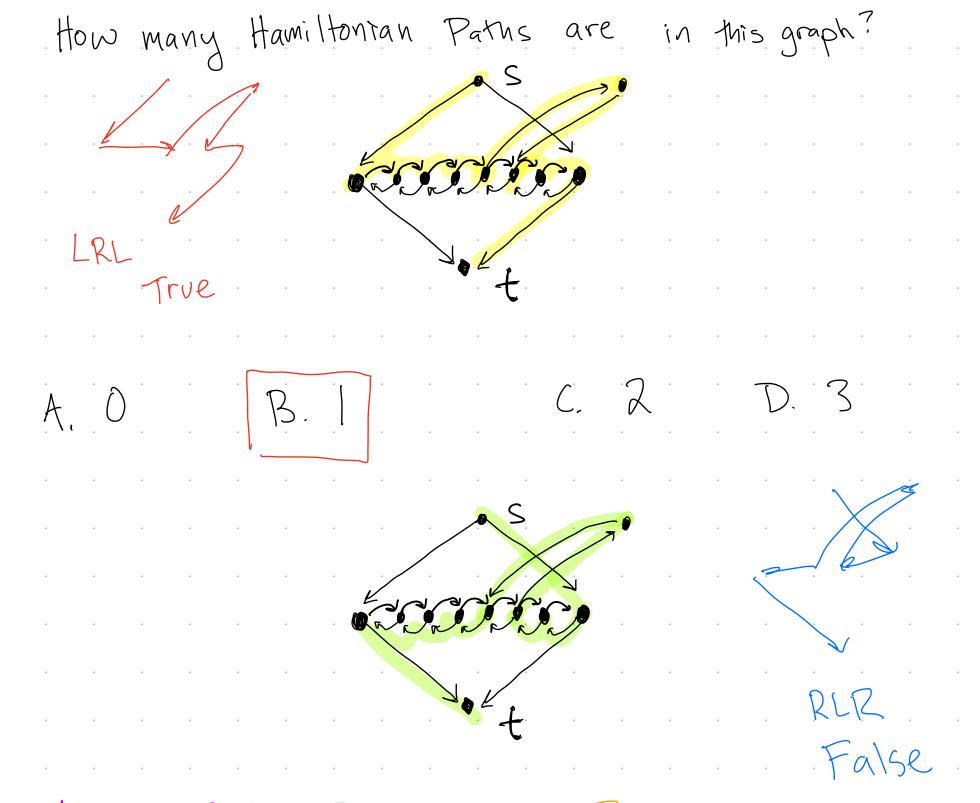
HP(x') MWIS(X) program X > HP(x')

NP-Hard problem are Narder/require more resources

Inan NP problems, b/c if could solve, they would
have power to solve any NP problem.

NP-Hard BUT Sampling 1 NP-Hard NP-Complete Hardest problems in NP:

(Traveling Salesperson, MWIS, Negative cycle avoiding shortest path)


def: QENP-Complete if QENP and QENP-Hard

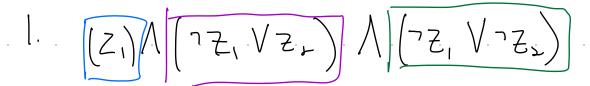
Fact 1: 3 SAT ENP-Hard (see 301)	٠
Lemma 1: If QENP-Hard and QEPR then RENP-Ha	17
(PSet 10)	٠
Theorem: Hamiltonian Path is NP-Complete	
Pf. Ham-Path ENP Cinsert proof from NP class]	
· Ham-Path & NP-Hard	٠
35AT = p Ham - Path	•
Joy Fact 1 + Lemma 1	٠
Ham-Path ENP-Hard	٠

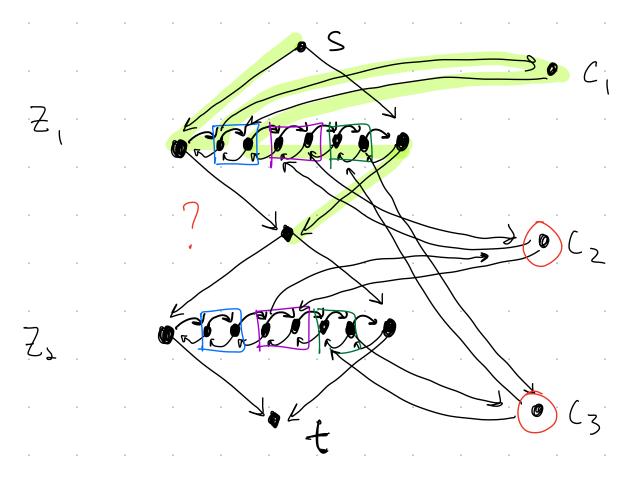
Formal Definition of Polytime Reduction def: REPQ ("Ris polytime reducible to Q") if / FR>G: 20,13* > 20,13* s.t. · J constant CRIQ s.t. runtime of fragon input x is O(1x1cr=a) (Polytime) · Y x ∈ 30,13*, R(x) = Yes iff Q(f_{R→Q}(x)) = Yes (Correctly convert input)

Lemma: 3SAT = P Ham-Path Strategy (1) Describe + 35AT > Ham-Path 2) Show fosts Ham-path runs in Polytime (3) Show X is 3SAT-Yes iff f3SAT-Ham-Path (X)
15 a Ham-Path - Yes 3SATSp HAM-Path: $\chi = (Z, \sqrt{7}Z_{2}\sqrt{2}) \wedge (Z_{3}\sqrt{2})$ HAM-DATH Lp 3 - SA+

How many Hamiltonian Paths are in this graph?

$$X = (Z_1 \vee 7Z_3) \wedge (Z_1 \vee 7Z_3) \wedge$$


Group Work


1. Encode (Z1) 1 (7Z, VZ) / (7Z, VZ) into Ham-Path

Instance. Show get a No Instance.

2. Runtime of f35AT > HAM-PATH? (Create adj matrix for graph)

3. 3SAT(X) = Yes iff HAMPATH (f3SAT-HAMPATH (X)) = Yes

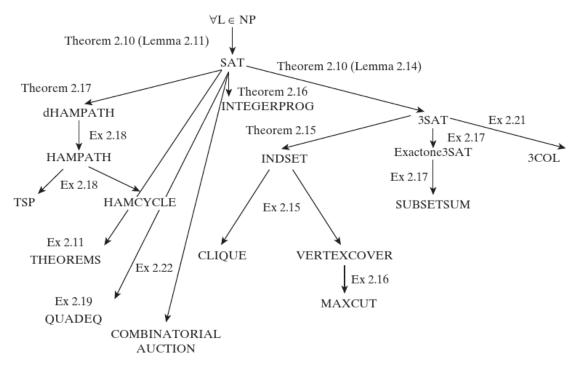
No Pathal.

E size of input to 3-SAT 2. Let M = # clauses $M \leq |X| \leq 3M$ $N \leq |X| \leq 8(3) = O(N^3)$ n = # variables Each gadget: 2m +4 (N(JM+4) Total gadgets: n Clause vertices: m 2nm+4n+m vertices Adj Matrix: O(n2m2) size O(2m) size $|X| = O(M_1 + N_1)$ Adj matrix is polynomial in the size of |X|, so using for loops, we can fill in this array in poly time

3.

3SAT(X) = Yes iff HAMPATH (f3SAT-HAMPATH (X)) = Yes

 \Rightarrow If $3SAT(x) = Yes, then there is a satisfying assignment <math>Z_1 \Rightarrow T_1, Z_2 \Rightarrow F_1 = 0$


Choose one satisfying literal for each clause. Go LRL or RLR through each gadget according to the satisfying assignment, and if that variable is the chosen one for satisfying a clause, jump from gadget to corresponding clause vertex, without breaking LRL/RLR flow. In this way we will touch each vertex once. Thus HAMPATH (fsat-shampity(x)) = YES.

Lemma 1: If QENP-Hard and QER then RENP-Hard.

2.4. The Web of Reductions

51

Figure 2.4. Web of reductions between the **NP**-completeness problems described in this chapter and the exercises. Thousands more are known.

(Arora + Boaz, Computational Complexity)