Learning Goals · Describe "Binary code," "Prefix free, "Average letter length" · Explain connection between binary codes + trees · Describe Huffman's alg. · Analyze runtime of Huffman's alg · Describe impact of data structures alg runtime · Prove correctness of Huffman's alg



<u>ex</u>:

. . . . . . . . . . . . . .

def:

Suppose you have a message where the letter "a" OCCURS 50% of the time, "b" 30%, and "c" 20%. Which is the best binary encoding of  $Z = \{a, b, c\}$ ? A): f(a)=00 B) f(a)=0 C) f(a)=0 f(b)=01 f(b)=1 f(b)=10f(c)=10 f(c)=01 f(c)=11

A): f(a) = OOC) f(a) = OB) f(a) = Df(b) = O(b)f(b) = 10f(b) = 1f(c) = 1f(c) = 10f(c) = 0

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

Average letter length:

. . . . . . . . . . . .

 $e_{\chi}$ :

Binary Trees & Binary Codes

f(a) = O  $f(b) = O \setminus \qquad \longleftrightarrow$  f(c) = (1)

<u>def</u>:

. . . . . . . . . . . . . . . . . . . .

|                                                             | Merge | Trees   | +0 | Create  | Prefi | x Free  | Codes   |       |
|-------------------------------------------------------------|-------|---------|----|---------|-------|---------|---------|-------|
| $\left  \begin{array}{cccccccccccccccccccccccccccccccccccc$ |       |         |    |         |       |         |         |       |
| $\left  \begin{array}{cccccccccccccccccccccccccccccccccccc$ |       | · · · · | •  | · · · · |       |         | · · · · | 7     |
| $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$  |       |         |    |         |       | · · · · | · · ·   |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$      |       |         |    |         |       |         | · · · · |       |
|                                                             | 4     | · · · · |    | · · · · |       |         |         |       |
|                                                             |       |         |    |         |       |         |         | · · · |

Optimal Binary Encoding Problem

jubrit:

Output:

Huffman's Algorithm

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

| Ū.     | P(i)  | · Use Huffman's algorithm to create a binary   |
|--------|-------|------------------------------------------------|
| Q      | .3    | Code                                           |
| Ь      | .25   | · What is the average letter length of your    |
| C.     | • 2   | code                                           |
| d d    | .15   | · What is the runtime of Huffman's in terms of |
| e<br>e | J • [ | [Z]=n? Ideas to improve?                       |
|        |       | · Why greedy?                                  |

| ٠ |   | • |   |   | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| • | ٠ | ٠ | • | • | • | • | • | • | • | • | • | • | • | • |   | • | • | • | • | ٠ | • |
| • | ٠ |   | • |   | • | ٠ | ٠ | ٠ | • | • | • | • | ٠ | • | ٠ | ٠ | • | ٠ | • | • | ٠ |

Huffman's Algorithm For each ie 2: · Create a tree with one node, label · Give tree weight p(i) While there is more than one tree: Merge two trees with smallest weights Set weight of merged tree to be sum of weights Why greedy:

Huffman's Algorithm For each iez: Create a tree with one node, label i Give tree weight p(i) While there is more than one tree: Merge two trees with smallest weights Set weight of merged tree to be sum of weights

Improve runtime? • At each iteration of while loop, find minimum value tree. • Helpful data structure??

Go Program! (Lots of details to figure out!) (see programming assignment) Ethical Matrix Thm: Huffman's Algorithm produces a prefix free code That minimizes average lefter length. Pf:

ex:  $\Sigma = \Xi e, f, g, h \Xi p(e) = .1 p(f) = .7 p(g) = .15 p(h) = .05$ They 5= Huffman 9 2 .15 G °.D5 .7 (h)  $\bigcirc$ (F .15 .7 .15 .15 .7 .15 Ð g (g)én γ. V ne E (7)Ì (g) (e/h

In general: ffman Lemma: There is an optimal tree for Z where a, b are siblings. (will prove later)

on Z Define 4 9+1 alb (fill in with d,  $p(a)_1 p(b)$ ) 6 They  $L(T^*) = \sum_{i \neq a, b \in \Sigma} P(i) d(i)$ + $L(T^{*-}) = \sum_{i \neq a/b} P(i)d(i) +$ 

| So |                     | • |   |
|----|---------------------|---|---|
| 00 | $(T^*) - L(T^* - )$ | ſ |   |
| ٠  |                     | • | • |

Thus

|  | • | • | • | • |
|--|---|---|---|---|
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   | - |

Similarly

 $L(T) - L(T^{-1}) = 1$ 

 $L(T^{*})-L(T^{*}) = L(T)-L(T^{-})$ 

Rearranging:  $L(T) - L(T^*) =$ This is a contradiction because

| • | • | • | • | • | • |
|---|---|---|---|---|---|
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |

Lemma: There is an optimal tree for Z with a, b (characters with smallest p-values) siblings.

. . . . . . . . . . . . . . . . . . . .