Learning Goals · Describe Dijkstra's alg · Prove correctness of Dijkstra's alg. · Analyze runtime of Dijkstra's alg

Dijkstra's Algorithm Input: G=(V,E), SEV, |V|=n, WE→Rt Output: N-dimensional arrays L, P. s.t. L[v]: length of shortest path from s to V in G P[v] = Shorstest path from s to v in G

X = 353Example L(S]=05 11 2 $P(S] = \phi$ While there is an edge from $X + \overline{X}$: $C \leftarrow \zeta(u,v) : U \in X, v \in X$ $(N^*, V^*) \in \operatorname{argmin} \{ \Sigma [u] + W(u, v) \}$, v (N,V) E (· 2 S y (= 4 $L\left[V^{*}\right] \leftarrow L\left[U^{*}\right] + W\left(u^{*}, v^{*}\right)$ $P[v^*] \leftarrow P[u^*] + (u^*, v^*)$ X = X V Z V Z 5 Ц $\chi = \xi$ (= Ξ <u>Х</u> = ζ.

Dijkstra's Algorithm Input: G = (V, E), $S \in V$, |V| = n, $W : E \rightarrow \mathbb{R}^+$ Output: N-dimensional arrays L, P s.t. L[v]: length of shortest path from s to v in G P[v] = shorstest path from s to v in G // X is set of visited vertices X ~ 353 L STED Base case Show Dijkstra's P[S]+ ¢ alg: fails with While there is an edge from $X + \overline{X}$: Negative weights $| (- \xi(u,v): u \in X, v \in \overline{X} \xi)$ $(N^*, V^*) \in \operatorname{argmin} \{L[u] + W(u, v)\}$ $[u, v) \in C$ 5-2-4 $\left[\left[V^{*} \right] - \left[\left[U^{*} \right] + W \left(V^{*} \right] \sqrt{*} \right) \right]$ $P[v^*] \stackrel{\sim}{\longrightarrow} P[u^*] + (u^*, v^*)$ Under what conditions X = X V Z V Z can Dijkstra's alg have Neg. weights but be successful?

Thm: Dijkstrais alg. Correctly returns the shortest Dal Pf:

.

•		, , , , , , , , , , , , , , , , , , , ,	ح	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•
•		٥		٠	٠	•	٠	٠	٠	٠	•		٠	٠	٠		•	•			٠
٠	٠	٠	<u>الا</u>	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠
٠	٠		s S	·	٠	٠	٠	•	٠	٠	٠	•	٠	٠	•	٠	٠	٥	•	٠	•
•	•	•	<u> </u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•			•		•	•	•	•	•		•	•				•			
•	•	٠		•	•		•		٠	٠	•			•							٠
٠	٠								٠												
•	٠			•	•		٠	•	٠	٠	•		•	•	•						•
٠	•	•	٠	•	٠	٠	٠	•	٠	٠	•	•		•	•	٠	٠	٠	•	٠	•
٠	٠	•	2		•	•	٠		٠	٠	•	٠				•	•	•	•	•	•
•	•	•	•	•	•	•	٠		•	٠	•	•		•		•	•	•	•	•	•
•	٠	٠		٠	٠	٠	٠		٠	٠	٠	٠				٠	٠	•	٠	٠	

What is the runtime of Dijkstra's alg as written? What data structure should you use to improve? What is runtime with improved data structure?

Xezsz L STED $P[5] = \phi$ While there is an edge from X to X: $C \leftarrow \frac{2}{3}(u,v) : U \in X, v \in X$ $(N^*, V^*) \in \operatorname{argmin}_{[u,v] \in C} \{ \sum_{i=1}^{n} | u_i v_i \} \in C$ $L\left[V^{*}\right] \leftarrow L\left[U^{*}\right] + W\left(U^{*}, V^{*}\right)$ $P\left[V^{*}\right] \sim P\left[V^{*}\right] + \left(V^{*}\right)$ X = X V Z V T Z

Objects in Priority Queue: vertices V & X attributes Vertex Object Name: Kry. DUIDU: Х In this situation, what should v prior be set to? 417=5 JD U C) 15 B) 8 \mathcal{M} D N WD 1 L[W]=7

.

Dijkstra's X~ 353 Min Heap L [5]=0 O(nlogn) Mithalize n items in heap O(logn) Remove mint ditem O(logn) Newsert new item $P[S] \leftarrow \phi$ /Initialize Heap If have already. found item

While attributes Vertex Object Name: [v // Update Heap Kuy, [Min L[u] + W(U,v) $U \in X$ $\left[N \right] + \left[N \right]$ prior: largmin NEX √4 Why is runtime O((n+m) logn) with adj. list? **d** -

Dijkstra's X~ 353 Min Heap L [5]=0 O(nlogn) Mittalize N items in heap O(logn) Remove mint ditem P[5]+ \$ //Initialize Heap · Insert new item $O(\log n)$ For MEV-253: $| |f(s,u) \in E$: If have already. $u. key \in W(s, u)$ found item U. V. priores S Else: U. Key $\ll \infty$ U. prior $\ll \phi$ Insert 11 into heap H

While H+p: U1m VEH. POP 6 $X \leftarrow X \cup \overline{Y} \overline{Y}$ Juw, r, t \mathcal{N} L[VI] = V. Key $P[v_{\overline{v}}] \leftarrow P[v_{\overline{v}}] \leftarrow P[v_{\overline{v}}] + (v_{\overline{v}})$ // Update Heap For r: (vtr) EE Remover from H lf r. key > [[v*] + w(v*, r) $|r. key \in [[v] + w(v, r)$ r prior < vi Keinsert r into H Why is runtime O((n+m) logn) **d** adj. list? with

Compare to Bellman Ford: O((n+m)n)

.