Learning Goals · Describe Dijkstra's alg V · Prove correctness of Dijkstra's alg. · Analyze runtime of Dijkstra's alg Announce ments • OH: Mon: 11-12, 2:30-3:30, Tues, Wed: 11-12 Sunday: Final Drop-In evening hours
Advice to future students go/cs302groups Exit Tickets · Negative weights

Dijkstra's Algorithm Input: G = (V, E), $S \in V$, |V| = n, $W : E \rightarrow \mathbb{R}^+$ Output: N-dimensional arrays L, P. s.L. L[v]: length of shortest path from s to V 'IN G P[v] = shorstest path from s to v in G X < ZSZ // X is set of visited vertices L[s] = D ? Base cases P[s] = \$\$ While there is an edge from X to X: $C \in \mathcal{Z}(U,V), U \in X, V \in \overline{X}$ $(u^*, v^*) \in argmin \{ \{ L[u] + w(u, v) \} \in Dijkstra Criterion (u, v) \in C \}$ $L[v^*] \leftarrow L[u^*] + \omega(u^*, v^*)$ $P[v^*] \ll P[u^*] + [u^*, v^*]$ $X \leftarrow X \cup Z \vee Z$

X = 353Example L[S]=05 2 $P[5] = \phi$ 5 While there is an edge from $X + \overline{X}$: $C \leftarrow Z(u,v) : U \in X, v \in X$ (1) $X = 253, \overline{X} = 24, \sqrt{5}$ $(N^*, V^*) \in \operatorname{argmin} \{L[u] + W(u, v)\}$ (N,V)&C $C = \frac{1}{2} (S, U), (S, v)$ $L\left[V^{*}\right] \leftarrow L\left[U^{*}\right] + W\left(u^{*}, v^{*}\right)$ L[S] + w(S, u) $P[v^*] \leftarrow P[u^*] + (u^*, v^*)$ L[S]+W(S,v)X = X V g V t g +4 5. $W^{\dagger} = S \quad V^{\dagger} = U$ (5,4) U $\chi = S_{V} \chi$ Sill Ś $(S_{1}u), (u_{1})$ $C = \left\{ \left(S_{1} \vee \right), \left(U_{1} \vee \right) \right\}$ $X = \frac{1}{2} S_1 U_1 V_3$ U L[S] + W(S,N) $\left(\mathbf{v}^{\dagger} \mathbf{v} \right) \mathbf{v}^{\dagger} \left(\mathbf{v}^{\dagger} \mathbf{v} \right)$ 2 $\overline{X} =$ 31

Dijkstra's Algorithm Input: G = (V, E), $S \in V$, |V| = n, $W : E \rightarrow \mathbb{R}^+$ Output: N-dimensional arrays L, P s.t. L[v]: length of shortest path from s to v in G P[v] = shorstest path from s to v in G // X is set of visited vertices X = 353 L [S]= O Base case Show Dijkstra's P [S]+ ¢ alg: fails with While there is an edge from $X to \overline{X}$: Negative weights $| C \leftarrow \xi(u,v) : u \in X, v \in \overline{X}$ S -2 -4 -4 $[[v^*] \leftarrow [[v^*] + W(v^*, v^*)$ $P[v^*] \sim P[u^*] + (u^*, v^*)$ Under what conditions can Dijkstra's alg have X = X V q V + q Neg. weights but be successful?

This Dijkstra's alg Correctly returns the shortest path Pf: We will prove Using induction on N = |X| that Dijkstra's alg correctly assigns L[v] and $P[v] \neq v \in X$. Base Case: When N = 1, $X = \frac{2}{5}s^{2}$ and L[s] = 0, $P[s] = \phi$. This is correct b/c the shortest path from s to itself has length O and uses no edges. Inductive Step. Let K=I. Assume for induction that Dijksta alg correctly assigns L[v] and P[v] & VEX when |X]=K. Suppose Dijkstra alg. is about to add the $(K+1)^{th}$ vertex to X. Let $(u^*, v^*) = \underset{(u,v) \in C}{\operatorname{argmin}} \sum_{(u,v) \in C} L(u] + w(u,v) \in J$, so Dijkstra chooses v* to be the (K+1)th vertex in X, and it sets $Y[v^*] = P[v^*] + (v^*v^*) \text{ and } L[v^*] = L[v^*] + W(v^*,v^*).$ We need to prove these assignments are correct. Suppose for contradiction that P=P[u*]+(u*,v*) is not the shortest path from s to v*. Let P* 7 P be the optimal (Shortest) path.

 $L(S \rightarrow x, P^*)$ is the length of the segment of P* from S to x X SX P* X S v v X v V v v V * (X,Y) is the 1st edge $L(S \rightarrow X, P*)$ in C to appear in Pt $L(P^*) = L(S \rightarrow X, P^*) + W(X, Y) + L(Y \rightarrow V^*, P^*)$ L(P) = L(S SWEP) + W(U+,V*) Thus $L(P^*) \ge L(P)$, contradicting the fact that P^* was optimal and P was not.

 $L(P^*) = L(S \rightarrow X, P^*) + W(X, Y) + L(Y \rightarrow Y^*, P^*)$ $\geq L(S \rightarrow X, P^{*}) + w(X, Y)$ Because $L(Y \rightarrow V^{*}) \geq 0$ > L[x] + W(x,y) Because P#'s path from s to x will be at least as long as the shortest path from 5 to x. By inductive assumption, L[x] is length of shortest path from sto $S[(n^*) + w(n^*, n^*)$ Because Dijkstra chose ut, vt to minimize Dijksteals $= L(P) = L(V^*)$ Criterio N

What is the runtime of Dijkstra's alg as written? What data structure should you use to improve? What is runtime with improved data structure? Min Heap to $X \in \{s\}$ L[s]=0 (()) store vertices $P[5] = \phi$. While there is an edge from $X to \overline{X}$: O(n) $C \leftarrow \overline{X}(u,v) \cdot U \in X, v \in \overline{X}$ $(W^*, V^*) \in \underset{(u,v) \in \Gamma}{\operatorname{argmin}} \underbrace{\{u, v \in \Lambda\}}_{\{u, v\}} + w(u, v) \underbrace{\{u, v\}}_{\{u, v\}} = O(n^2) \Big| C \Big| \leq O(n^2) \Big|$ $O(M) \left(O(N^3) \right)$ $(u, v) \in C$ $L\left[V^{*}\right] \leftarrow L\left[U^{*}\right] + W\left(U^{*},V^{*}\right)$ $\mathcal{O}(NM)$ $P\left[V^{*}\right] \leftarrow P\left[U^{*}\right] + \left(U^{*},V^{*}\right)$ X = X V Z V T Z

.

Objects in Priority Queue: vertices V & X attributes Vertex Object Name: 1 Kry: Min UEX (+w(u)v)Ŷ prior: Gramin $\left[n \right] + m\left(n^{1} \right)$ UEX Х In this situation, what should LTN7=5 V. prior be set to? JD U W B 15 8 \mathcal{N} WO 3) 2) 4 L[w]= +

.

Dijkstra's X~ 353 Min Heap L STO O(nlogn) Mittalize N items in heap O(logn) Remove mint ditem P[5]+ \$ //Initialize Heap · Insert new item $O(\log n)$ For U: (s,u) EE: $u. Key \in w(s, u)$ $u. prior \in S$ If have already. found item Insert u object into heap It For $U: (S, U) \notin E$: U-Key « » U. prior « » Insert u into Heap H

While H # Ø: V* eH. pop X < X'U'qut E L[V*] = V*. Key P[v*] « P[v*. prior] + (v* prior, v* attributes_ Vertex Object Name: V // Update Heap K_{u} , Min L[u] + W(u,v) $u \in X$ prior: larg min $\left[\left(N \right) + \left[N \right) \right] \right]$ NEX v4 is runtime O((n+m) logn) Why.

adj. list?

with

Dijkstra's X~ 353 Min Heap L [5]=0 O(nlogn) Mittalize N items in heap O(logn) Remove mint ditem P[5]+ \$ //Initialize Heap · Insert new item $O(\log n)$ For MEV-253: $| |f(s,u) \in E$: If have already. $u. key \in W(s, u)$ found item U. V. priores S Else: U. Key $\ll \infty$ U. prior $\ll \phi$ Insert 11 into heap H

While H+p: U1m VEH. POP 6 $X \leftarrow X \cup \overline{z} \cup \overline{z}$ Juw, r, t \mathcal{N} L[VI] = V. Key P[vi] & P[V* prior] + (v* prior, v*) // Update Heap For r: (vtr) EE Remover from H lf r. key > L[v*] + w(v*, r) $|r. key \in [[v] + w(v, r)]$ r prior < vi Keinsert r into H Why is runtime O((n+m) logn) **d** adj. list? with

Compare to Bellman Ford: O((n+m)n)

.