+5 Persimmons Apples Applications : Bartering Dates -1 2 Bananas Finding inefficiencies in financial Arbitrage: ŧ Markets. 1.2 -3.4 Networks - Distributed Graph Data Routing in Xox Cold Weather Plans?

Bartering St	takeholders	Well-Being	Autonomy	Justice
· · · · · ·	Merchants	advantage of,	Won't every Know interac	ting Unjust
		· get customers	with alg	
Customer	- Buyers			Weathy might have more success
				→ More \$
				3 access to algorithm
<u>Arbitrage</u>				
1	raders	· · freetsh		Richer traders
1			\bigvee	have access to
				better servers,
Finv	ronment		. Ø P	location of
				location of data centers

Defining Subproblems u that Clever idea: Pu,i = Shortest path from s to uses at most i edges. What is L(Pt,1), L(Pt,2), L(Pt,3) for the following graph $S = \underbrace{S}_{1} \underbrace{S}_{1} \underbrace{S}_{2} \underbrace{S}_{1} \underbrace{S}_{2} \underbrace{S}_{1} \underbrace{S}_{2} \underbrace{F}_{1} \underbrace{S}_{2} \underbrace{F}_{1} \underbrace{S}_{2} \underbrace{F}_{1} \underbrace{F}_{$ NO Path, no edge Last choice a strategy makes? Last vertex prior to t.

Designing a Lynamic Prog. Alg · Recurrence relation for Pu, i = shortest path from s to u that uses at Most i edges if shortest path with i edges goes through v directly prior to u $P_{u,i} = \left\{ \begin{array}{ccc} & & & \\$ if Shortest path with i edges goes through w directly prior to u if shortest path to u uses less than i edges • Recurrence relation for objective function $\begin{pmatrix} w(u,u) = 0 \\ w(u,v) = \infty \end{pmatrix}$ $\mathcal{L}(\mathcal{P}_{u_1}i) = \begin{cases} \frac{1}{2} & \frac{$ Base case - $\begin{array}{l} \text{Helpful} \rightarrow \underset{u \in S}{\text{Min}} & \mathcal{F}(u) \end{array}$